Environmental Learning based on Higher Order Thinking Skills: A Needs Assessment
Abstract
Keywords
Full Text:
PDFReferences
Afflerbach, P., Cho, B. Y., & Kim, J. Y. (2015). Conceptualizing and Assessing Higher-Order Thinking in Reading. Theory into Practice, 54(3), 203–212. https://doi.org/10.1080/00405841.2015.1044367
Alias, N., DeWitt, D., & Siraj, S. (2013). Design and Development of Webquest for Physics Module by Employing Isman Instructional Design Model. Procedia - Social and Behavioral Sciences, 103, 273–280. https://doi.org/10.1016/j.sbspro.2013.10.335
Anderson, L. W., Krathwohl, D. R., Airiasian, W., Cruikshank, K. A., Mayer, R. E., & Pintrich, P. R. (2001). A taxonomy for learning, teaching and assessing: A revision of Bloom’s Taxonomy of educational outcomes: Complete edition. New York: Longman.
Bojey, M., Hui, B., & Campbell, R. (2014). Engaging higher order thinking skills with a personalized physics tutoring system. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8474 LNCS, 613–614. https://doi.org/10.1007/978-3-319-07221-0_78
Camacho, D. J., & Legare, J. M. (2015). Opportunities to Create Active Learning Techniques in the Classroom. Journal of Instructional Research, 4, 38–45.
Choudri, B. S., Baawain, M., Al-Zeidi, K., Al-Nofli, H., Al-Busaidi, R., & Al-Fazari, K. (2017). Citizen perception on environmental responsibility of the corporate sector in rural areas. Environment, Development and Sustainability, 19(6), 2565–2576. https://doi.org/10.1007/s10668-016-9855-y
Dangelico, R. M., Pujari, D., & Pontrandolfo, P. (2017). Green Product Innovation in Manufacturing Firms: A Sustainability-Oriented Dynamic Capability Perspective. Business Strategy and the Environment, 26(4), 490–506. https://doi.org/10.1002/bse.1932
Dubas, J. M., & Toledo, S. A. (2016). Taking higher order thinking seriously: Using Marzano’s taxonomy in the economics classroom. International Review of Economics Education, 21, 12–20. https://doi.org/10.1016/j.iree.2015.10.005
Fisher-Maltese, C., & Zimmerman, T. D. (2015). A garden-based approach to teaching life science produces shifts in students’ attitudes toward the environment. International Journal of Environmental and Science Education, 10(1), 51–66. https://doi.org/10.12973/ijese.2015.230a
FitzPatrick, B., & Schulz, H. (2015). Do Curriculum Outcomes and Assessment Activities in Science Encourage Higher Order Thinking? Canadian Journal of Science, Mathematics and Technology Education, 15(2), 136–154. https://doi.org/10.1080/14926156.2015.1014074
Hamden, M., & Low, K. C. P. (2015). Ecotourism development in Brunei Darussalam. Transnational Corporations Review, 6(3), 248–272. https://doi.org/10.5148/tncr.2014.6304
Hidayati, N., & Wuryandari, A. I. (2012). Media Design for Learning Indonesian in Junior High School Level. Procedia - Social and Behavioral Sciences, 67, 490–499. https://doi.org/10.1016/j.sbspro.2012.11.354
Hugerat, M., & Kortam, N. (2014). Improving higher order thinking skills among freshmen by teaching science through inquiry. Eurasia Journal of Mathematics, Science and Technology Education, 10(5), 447–454. https://doi.org/10.12973/eurasia.2014.1107a
Husamah, H., Fatmawati, D., & Setyawan, D. (2018). OIDDE Learning Model : Improving Higher Order Thinking Skills of Biology Teacher Candidates. Interntaional Journal of Instruction, 11(2), 249–264.
Hwang, G.-J., Lai, C.-L., Liang, J.-C., Chu, H.-C., & Tsai, C.-C. (2018). A long-term experiment to investigate the relationships between high school students’ perceptions of mobile learning and peer interaction and higher-order thinking tendencies. Educational Technology Research and Development, 66(1), 75–93. https://doi.org/10.1007/s11423-017-9540-3
Koutsoukos, M., Fragoulis, I., & Valkanos, E. (2015). Connection of environmental education with application of experiential teaching methods: A case study from Greece. International Education Studies, 8(4), 23–28. https://doi.org/10.5539/ies.v8n4p23
Lee, K., & Lai, Y. (2017). Facilitating higher-order thinking with the flipped classroom model: a student teacher’s experience in a Hong Kong secondary school. Research and Practice in Technology Enhanced Learning, 12(1). https://doi.org/10.1186/s41039-017-0048-6
Lekakos, G., Vlachos, P., & Koritos, C. (2014). Green is good but is usability better? Consumer reactions to environmental initiatives in e-banking services. Ethics and Information Technology, 16(2), 103–117. https://doi.org/10.1007/s10676-014-9337-6
Murphy, C., Bianchi, L., McCullagh, J., & Kerr, K. (2013). Scaling up higher order thinking skills and personal capabilities in primary science: Theory-into-policy-into-practice. Thinking Skills and Creativity, 10, 173–188. https://doi.org/10.1016/j.tsc.2013.06.005
Mustam, B., & Daniel, E. S. (2016). Informal and Formal Environmental Education Infusion: Actions of Malaysian Teachers and Parents among Students in a Polluted Area. Malaysian Online Journal of Educational Sciences, 4(1), 9–20. Retrieved from http://www.moj-es.net/frontend/articles/pdf/v04i01/v04-i01-01.pdf
Narayanan, S., & Adithan, M. (2015). Analysis of Question Papers in Engineering Courses with Respect to HOTs (Higher Order Thinking Skills). American Journal of Engineering Education, 6(1), 1–10.
Quieng, M. C., Lim, P. P., & Lucas, M. R. D. (2015). 21st Century-based Soft Skills: Spotlight on Non-cognitive Skills in a Cognitive-laden Dentistry Program. European Journal of Contemporary Education, 11(1), 72–81. https://doi.org/10.13187/ejced.2015.11.72
Ritter, S. M., & Mostert, N. (2017). Enhancement of Creative Thinking Skills Using a Cognitive-Based Creativity Training. Journal of Cognitive Enhancement, 1(3), 243–253. https://doi.org/10.1007/s41465-016-0002-3
Roderer, T., & Roebers, C. M. (2014). Can you see me thinking (about my answers)? Using eye-tracking to illuminate developmental differences in monitoring and control skills and their relation to performance. Metacognition and Learning, 9(1), 1–23. https://doi.org/10.1007/s11409-013-9109-4
Said, A., & Syarif, E. (2016). The Development of Online Tutorial Program Design Using Problem-Based Learning in Open Distance Learning System. Journal of Education and Practice, 7(18), 222–229.
Saido, G. A. M., Siraj, S., DeWitt, D., & Al-Amedy, O. S. (2018). Development of an instructional model for higher order thinking in science among secondary school students: a fuzzy Delphi approach. International Journal of Science Education, 40(8), 847–866. https://doi.org/10.1080/09500693.2018.1452307
Sharif, A., & Cho, S. (2015). 21st-Century Instructional Designers: Bridging the Perceptual Gaps between Identity, Practice, Impact and Professional Development. RUSC. Universities and Knowledge Society Journal, 12(3), 72–85. https://doi.org/10.7238/rusc.v12i3.2176
Sriwongchai, A., Jantharajit, N., & Chookhampaeng, S. (2015). Developing the Mathematics Learning Management Model for Improving Creative Thinking In Thailand. International Education Studies, 8(11), 77–87. https://doi.org/10.5539/ies.v8n11p77
Tajudin, N. M., & Chinnappan, M. (2016). The Link between Higher Order Thinking Skills, Representation and Concepts in Enhancing TIMSS Tasks. International Journal of Instruction, 9(2), 199–214. https://doi.org/10.12973/iji.2016.9214a
Talmi, I., Hazzan, O., & Katz, R. (2018). Intrinsic Motivation and 21st-Century Skills in an Undergraduate Engineering Project: The Formula Student Project. Higher Education Studies, 8(4), 46. https://doi.org/10.5539/hes.v8n4p46
Tanujaya, B., Mumu, J., & Margono, G. (2017). The Relationship between Higher Order Thinking Skills and Academic Performance of Student in Mathematics Instruction. International Education Studies, 10(11), 78–85. https://doi.org/10.5539/ies.v10n11p78
Teimourtash, M., & YazdaniMoghaddam, M. (2017). On the Plausibility of Bloom’s Higher Order Thinking Strategies on Learner Autonomy: The Paradigm Shift. Asian-Pacific Journal of Second and Foreign Language Education, 2(1), 14. https://doi.org/10.1186/s40862-017-0037-8
Vidergor, H. E. (2018). Effectiveness of the multidimensional curriculum model in developing higher-order thinking skills in elementary and secondary students. Curriculum Journal, 29(1), 95–115. https://doi.org/10.1080/09585176.2017.1318771
Yang, K. K., Lee, L., Hong, Z. R., & Lin, H. S. (2016). Investigation of effective strategies for developing creative science thinking. International Journal of Science Education, 38(13), 2133–2151. https://doi.org/10.1080/09500693.2016.1230685
Yavich, R., & Starichenko, B. (2017). Design of Education Methods in a Virtual Environment. Journal of Education and Training Studies, 5(9), 176. https://doi.org/10.11114/jets.v5i9.2613
Yee, M. H., Yunos, J. M., Othman, W., Hassan, R., Tee, T. K., & Mohamad, M. M. (2015). Disparity of Learning Styles and Higher Order Thinking Skills among Technical Students. Procedia - Social and Behavioral Sciences, 204(November 2014), 143–152. https://doi.org/10.1016/j.sbspro.2015.08.127
Yusnaeni, Y., Corebima, A. D., Susilo, H., & Zubaidah, S. (2017). Creative Thinking of Low Academic Student Undergoing Search Solve Create and Share Learning Integrated with Metacognitive Strategy. International Journal of Instruction, 10(2), 245–262. https://doi.org/10.1016/j.spinee.2011.10.010
DOI: https://doi.org/10.29103/ijevs.v1i1.1389
Article Metrics
Abstract Views : 3927 timesPDF Downloaded : 1133 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Ilmi Zajuli Ichsan, Diana Vivanti Sigit, Mieke Miarsyah