Using Gauss - Jordan elimination method with The Application of Android for Solving Linear Equations

Muhaimin Hasanudin, Dedy Prasetya Kristiadi, Khozin Yuliana, Rasyid Tarmizi, Dwina Kuswardani, A Abdurrasyid

Abstract


Problems involving mathematical models appear in many scientific disciplines. Complex mathematical models sometimes cannot be solved by analytic methods using standard algebraic formulas. Computers play a major role in the development of the field of numerical methods because the calculation uses numerical methods in the form of arithmetic operations, the number of arithmetic operations is very large and repetitive, so manual calculations are often tedious and errors occur. This study aims to develop software solutions for linear equations by implementing the Gauss-Jordan elimination(GJ-elimination) method, building software for linear equations carried out through five stages, namely: (1) System Modeling (2) Simplification of Models, (3) Numerical Methods and algorithms, (4) programming languages using The Android Studio and (5) Simulation programs. Overall regarding content, proper software that can be used by students and lecturers in implementing numerical methods because there are ways to use the application and steps to solve linear equation problems using the GJ-elimination method.


Keywords


Linear Equation; The Gauss - Jordan Elimination; Android Studio

Full Text:

PDF

References


Ahmad, I. H., & Ratnasari, L. (2010). Menyelesaikan Sistem Persamaan Linier Menggunakan Analisis SVD. Jurnal Matematika, 13(1), 40-45.

Anzt, H., Dongarra, J., Flegar, G., & Quintana-Ortí, E. S. (2017, February). Batched gauss-jordan elimination for block-jacobi preconditioner generation on gpus. In Proceedings of the 8th International Workshop on Programming Models and Applications for Multicores and Manycores (pp. 1-10). ACM.

Atasoy. N.A, B. Sen, and B. Selcuk. (2012) “Using Gauss-Jordan elimination method with CUDA for linear circuit equation systems,” Procedia Technol., vol. 1, no. 1, pp. 31–35..

Akai. T. J.,(1994). “Applied Numerical Methods for Engineers,” Eur. J. Eng. Educ., vol. 19, no. 4, pp. 515–516.

Atasoy, N. A., Sen, B., & Selcuk, B. (2012). Using gauss-Jordan elimination method with CUDA for linear circuit equation systems. Procedia Technology, 1, 31-35.

Bai. J, L. Gao, and L. He,(2010). “Constructing windows+gcc+mpi+omp and performance testing with Gauss-Jordan elimination method in finding the inverse of a matrix,” 2010 Int. Conf. Comput. Des. Appl. ICCDA 2010, vol. 2, no. Iccda, pp. 2–5.

Bains R,(1992). “Elementary linear algebra,” Eng. Anal. Bound. Elem., vol. 9, no. 4, p. 368.

Chapra, S. C., & Canale, R. P. (2010). Numerical methods for engineers. Boston: McGraw-Hill Higher Education,.

Grcar, J. F. (2011). How ordinary elimination became Gaussian elimination. Historia Mathematica, 38(2), 163-218.

Guo, X., & Gong, Z. (2010). Block Gaussian elimination methods for fuzzy matrix equations. International Journal of Pure and Applied Mathematics, 58(2), 157-168.

Isaacson, E., & Keller, H. B. (2012). Analysis of numerical methods. Courier Corporation.

Ji, J. (2012). Gauss–Jordan elimination methods for the Moore–Penrose inverse of a matrix. Linear Algebra and Its Applications, 437(7), 1835-1844.

Ji, J., & Chen, X. (2014). A new method for computing Moore–Penrose inverse through Gauss–Jordan elimination. Ap

Kharel, A., & Cao, L. (2015, April). Decoding of short LT codes over BIAWGN channels with Gauss-Jordan elimination-assisted belief propagation method. In 2015 Wireless Telecommunications Symposium (WTS) (pp. 1-6). IEEE.

Kiusalaas, J. (2013). Numerical methods in engineering with Python 3. Cambridge university press.

Lu, L., Li, G. Y., Swindlehurst, A. L., Ashikhmin, A., & Zhang, R. (2014). An overview of massive MIMO: Benefits and challenges. IEEE journal of selected topics in signal processing, 8(5), 742-758.

Moussa, S., Razik, A. M. A., Dahmane, A. O., & Hamam, H. (2013). FPGA implementation of floating-point complex matrix inversion based on GAUSS-JORDAN elimination. In 2013 26th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE) (pp. 1-4). IEEE.

Michailidis. P. D. and K. G. Margaritis. (2011). “Open multi processing (OpenMP) of Gauss-Jordan method for solving system of linear equations,” Proc. - 11th IEEE Int. Conf. Comput. Inf. Technol. CIT 2011, pp. 314–319..

Nursuprianah, I., & Sholikhah, M. (2009). Analisis kesulitan mahasiswa dalam memahami mata kuliah aljabar matriks (Studi kasus pada semester IV tadris matematika tahun akademik 2008/2009 di STAIN Cirebon). Jurnal EduMa, 1(1), 75-84.

Rosita, C. D., Laelasari, L., & Noto, M. S. (2014). Analisis Kemampuan Pemahaman Matematis Mahasiswa pada Mata Kuliah Aljabar Linear 1. Euclid, 1(2).

Sasongko, S. B. (2010). Metode Numerik dengan Scilab. Penerbit Andi.

Simultan. P. L.,(2014). “Penyelesaian Persamaan Linier Simultan,” pp. 31–44.

Sharma, G., Agarwala, A., & Bhattacharya, B. (2013). A fast parallel Gauss Jordan algorithm for matrix inversion using CUDA. Computers & Structures, 128, 31-37.

Stanimirović, P. S., & Petković, M. D. (2013). Gauss–Jordan elimination method for computing outer inverses. Applied Mathematics and Computation, 219(9), 4667-4679.

Vijayalakshmi, V., & Sattanathan, R. (2011). ST decomposition method for solving fully fuzzy linear systems using Gauss Jordan for trapezoidal fuzzy matrices. In International Mathematical Forum (Vol. 6, No. 45, pp. 2245-2254).

Wang. G, H. Liu, and X. Liu.(2011). “The application of excel in solving linear equations and nonlinear equation,” 2011 Int. Conf. Comput. Sci. Serv. Syst. CSSS 2011 - Proc., pp. 4081–4084.

Wijayaningrum V.N and F. Utaminingrum, (2017). “Numerical methods for initialization in fodder composition optimization,” 2016 Int. Conf. Adv. Comput. Sci. Inf. Syst. ICACSIS 2016, pp. 397–400..

Yang, K., Li, Y., & Xia, Y. (2013). A parallel method for matrix inversion based on gauss-jordan algorithm. Journal of Computational Information Systems, 9(14), 5561-5567.

Ziad. M.T.I, Y. Alkabani, and M. W. El-Kharashi.(2015) “On hardware solution of dense linear systems via Gauss-Jordan Elimination,” IEEE Pacific RIM Conf. Commun. Comput. Signal Process. - Proc., vol. 2015–Novem, pp. 364–369.




DOI: https://doi.org/10.29103/ijevs.v1i6.1670

Article Metrics

 Abstract Views : 1798 times
 PDF Downloaded : 376 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Muhaimin Hasanudin, Dedy Prasetya Kristiadi, Khozin Yuliana, Rasyid Tarmizi, Dwina Kuswardani, A Abdurrasyid