Hybrid-dynamic objects: DGS environments and conceptual transformations
Abstract
Keywords
Full Text:
PDFReferences
Adda, J. (1984) Fight Against Academic Failure in Mathematics.. In Peter Damerow, Mervyn E. Dunkley, Bienvenido F. Nebres and Bevan Werry (eds), ‘Mathematics for All’. Reports and papers presented in Theme Group I, at the 5th International Congress on Mathematical Education, Adelaide, Paris: UNESCO, Science and Technology Education Document Series, no. 20: pp. 58-61
Balacheff, N. Kaput, J. (1997) Computer-based learning environment in mathematics. Alan Bischop. International Handbook of Mathematics Education, Kluwer Academic publisher, pp.469501, 1997.
Chevallard, Y. (1989) Le passage de l’arithmétique à l’algèbre dans l'enseignement des mathématiques au collège Petit x, 19, 43-72.
Cerulli, M. (2004): Introducing pupils to algebra as a theory: L’Algebrista as an instrument of semiotic mediation. PhD Thesis, Dipartimento di Matematica, Università degli Studi di Pisa
Coxford, A. F., Usiskin Z. P.(1975). Geometry: A Transformation Approach, Laidlaw Brothers, Publishers.
Cottrill, Jim, Dubinsky, Ed, Nichols, Devilyna, Schwingendorf, Keith, Thomas, Karen & Vidakovic, Draga (1996). Understanding the limit concept: Beginning with a co-ordinated process schema. Journal of Mathematical Behavior, 15, 167–192.
Davis, R. B. (1983). Complex Mathematical Cognition. In Herbert P. Ginsburg (Ed.) The Development of Mathematical Thinking, (pp. 254–290). Academic Press, New York.
Davis, R. B. (1984). Learning mathematics: The cognitive approach to mathematics education. London: Croom Helm
Davis, G., Tall, D., Thomas, M.(1997) What is the object of the encapsulation of a process? Proceedings of MERGA. Rotarua, New Zealand, July, 1997, vol. 2, pp. 132–139.
Dienes, Zoltan P. (1960). Building up Mathematics, Hutchinson Educational: London.
Drijvers, P. & Gravemeijer, K. (2005). Computer Algebra as an Instrument. In Guin, D. et. Al. pp 163-196
Drijvers, P., & Trouche, L. (2008). From artifacts to instruments: A theoretical framework behind the orchestra metaphor. In G. W. Blume & M. K. Heid (Eds.), Research on technology and the teaching and learning of mathematics: Vol. 2. Cases and perspectives (pp. 363-392). Charlotte, NC: Information Age.
Dubinsky, E. (1986). Teaching mathematical induction I. Journal of Mathematical Behavior, 5(3), 305–317.
Dubinsky, E. & Lewin, P. (1986). Reflective abstraction and mathematics education. Journal of Mathematical Behavior, 5, 55–92.
Dubinsky, E. (1988). On Helping Students Construct the Concept of Quantification. 12th International Conference Psychology of Mathematics Education. Veszprem. vol. I:255-262.
Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. O. Tall (Ed.), Advanced Mathematical Thinking (pp. 95-123). Dordrecht: Kluwer Academic Publishers
Dubinsky, E. & McDonald, M. (2001). APOS: A constructivist theory of learning. In D. Holton (Ed.) The Teaching and Learning of Mathematics at University Level: An ICMI Study (pp. 275–282). Dordrecht: Kluwer Academic Publishers
Duval R. (1988). Graphiques et equations: l’articulation de deux registres, in Annales de Didactique et de Sciences Cognitives, 1, 235-255
Duval R. (1993). Registres de représentations sémiotique et fonctionnement cognitif de la pensée. Annales de Didactique et de Sciences Cognitives, ULP, IREM Strasbourg. 5, 37-65.
Duval R. (1995). Geometrical pictures: Kinds of representation and specific Processings. In Exploiting Mental Imagery with Computers in Mathematics Education (R. Suttherland & J. Mason Eds.) Berlin: Springer pp. 142-157
Duval R. (1999) Representation, vision and visualization: cognitive functions in mathematical thinking. Basic issues for learning. Plenary session Proceedings of the Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, Cu-ernavaca, Morelos, México.
Duval, R. (2000) Basic issues for research in mathematics education, In T. Nakahara, M. Koyama (Eds.), Proceedings of the 24th Conference of the International Group for the Psychology of Mathematics Education, (Vol 1, pp. 55-69) Hiroshima: Hiroshima University
Duval, R. (2002). The cognitive analysis of problems of comprehension in the learning of mathematics. Mediterranean Journal for Research in Mathematics Education, 1(2), 1-16.
Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61, 103-131
Fischbein, E. (1993) The theory of figural concepts, Educational Studies in Mathematics, 24(2), 139-162.
Fischbein, E. (1994). The interaction between the formal, the algorithmic, and the intuitive components in a mathematical activity. In R. Biehler, R. W. Scholz, R. Straber, B. Winkelmann (Eds.), Didactics of Mathematics as a Scientific Discipline (pp. 231-245). Dordrecht: Kluwer Academic Publishers. Printed in the Netherlands.
Fuys, D., Geddes, D., & Tischler, R. (Eds). (1984). English translation of selected writings of Dina van Hiele-Geldof and Pierre M. van Hiele. Brooklyn: Brooklyn College. (ERIC Document Reproduction Service No. ED 287 697).
González G., Herbst P. (2009) Students' conceptions of congruency through the use of dynamic geometry software. International Journal of Computers for Mathematical Learning. 14 (2) 153-182.
Goldin, G., & Shteingold, N. (2001). Systems of representations and development of mathematical concepts. In A. Cucoco, & Curcio, F (Ed.). The roles of representation in school mathematics (pp. 1-23). Reston: National Council of Teachers Mathematics.
Gray, E. M., & Tall D. O. (1991). Duality, Ambiguity and Flexibility in Successful Mathematical Thinking, Proceedings of PME XIII, Assisi Vol. II 72-79
Gray, E. M. & Tall, D. O. (1994). Duality, Ambiguity and Flexibility: A Proceptual View of Simple Arithmetic. Journal for Research in Mathematics Education, 26 2, 115–141.
Greeno, James (1983). Conceptual Entities. In Dedre Gentner, Albert L. Stevens (Eds.), Mental Models, (pp. 227–252). Hillsdale, NJ: Lawrence Erlbaum Associates.
Hoffmann, M. H. G. (2004). Learning by Developing Knowledge Networks. Zentralblatt für Didaktik der Mathematik ZDM, 36 (6), 196-205.
Hollebrands, K. F. (2003). High school students’ understandings of geometric transformations in the context of a technological environment. Journal of Mathematical Behavior 22 (2003) 55–72.
Hollebrands, K. (2007). The role of a dynamic software program for geometry in the strategies high school mathematics students employ. Journal for Research in Mathematics Education, 38(2), 164-192.
Hollebrands, K., Laborde, C., & StraBer, R. (2008). Technology and the learning of geometry at the secondary level. Research on Technology and the Teaching and Learning of Mathematics, 1, 155-205.
Hohenwarter, M. (2001). GeoGebra. Online at: http://www.geogebra.org/cms/.
Jackiw, N. (1991) The Geometer's Sketchpad (Computer Software).Berkeley, CA: Key Curriculum Press.
Jackiw, R. & Finzer, F. (1993). The Geometer's Sketchpad: Programming by Geometry, in A. Cypher (ed.), Watch What I Do: Programming by Demonstration (pp. 293-308). Cambridge, London: The MIT Press.
Janvier, C. (1987) Translation Processes in Mathematics Education. In Janvier C. (Ed.) Problems of Representation in the Teaching and Learning of Mathematics, Hillsdale, New Jersey: Lawrence Erlbaum Associates, 27-32,
Kaput, J. J. (1987). Representation systems and mathematics. In C. Janvier (Ed.), Problems of Representation in the Teaching and Learning of Mathematics (pp. 19-26). New Jersey: Lawrence Erlbaum Associates
Kaput, J. (1991). Notations and representations as mediators of constructive processes. In E. Glasersfeld (Ed.),Radical Constructivism in Mathematics Education (pp. 53-74). Netherlands: Kluwer Academic Publishers.
Kaput, J. (1999). Representations, inscriptions, descriptions and learning: A kaleidoscope of windows. Journal of Mathematical Behavior, 17(2), 256-281.
Laborde, C (2003). Technology used as a tool for mediating knowledge in the teaching of mathematics: the case of Cabri-geometry. Plenary speech delivered at the Asian Technology Conference in Mathematics. Chung Hau University, Taiwan.
Laborde C. (2004). New technologies as a means of observing students’ conceptions and making them develop: the specific case of dynamic geometry. ICME 10 – TSG22, Copenhagen, Denmark
Laborde, J-M., Baulac, Y., & Bellemain, F. (1988) Cabri Géomètre [Software]. Grenoble, France: IMAG-CNRS, Universite Joseph Fourier.
Mayer, R. E. (2002) “Understanding conceptual change: A commentary”. In Reconsidering conceptual change: Issues in theory and practice, Edited by: Limon, M. and Mason, L. 101–111. Dordrecht: Kluwer Academic Publisher
Monaghan, F. (2000) What difference does it make? Children views of the difference between some quadrilaterals, Educational Studies in Mathematics, 42 (2), 179–196.
Pape, S., & Tchoshanov, M. (2001). The role of representation(s) in developing mathematical understanding. Theory into Practice, 40(2), 118-125.
Patsiomitou, S. (2005). Fractals as a context of comprehension of the meanings of the sequence and the limit in a Dynamic Computer Software environment. Master Thesis. Department of Mathematics. National and Kapodistrian University of Athens. (in Greek)
Patsiomitou, S. (2006a): DGS ‘custom tools/scripts’ as building blocks for the formulation of theorems-in-action, leading to the proving process. Proceedings of the 5th Pan-Hellenic Conference with International Participation "ICT in Education" (HCICTE 2006), pp. 271-278, Thessaloniki, 5-8 October. ISBN 960-88359-3-3 (in Greek). Http://www.etpe.gr/custom/pdf/etpe1102.pdf
Patsiomitou, S. (2006b): Dynamic geometry software as a means of investigating - verifying and discovering new relationships of mathematical objects. “EUCLID C”: Scientific journal of Hellenic Mathematical Society (65), pp. 55-78 (in Greek)
Patsiomitou, S. (2006c): Transformations on mathematical objects through animation and trace of their dynamic parameters. Proceedings of the 5th Pan-Hellenic Conference with International Participation. Informatics and Education-ETPE, pp. 1070-1073, Thessaloniki, 5-8 October 2006. ISBN 960-88359-3-3. (in Greek) http://www.etpe.gr/custom/pdf/etpe1213.pdf
Patsiomitou, S. (2007). Fractals as a context of comprehension of the meanings of the sequence and the limit in a Dynamic Computer Software environment. Electronic Proceedings of the 8th International Conference on Technology in Mathematics Teaching (ICTMT8) in Hradec Kralove (E. Milkova, P. Prazak, eds.) University of Hradec Kralove, ISBN. 978-80-7041-285-5 (CD-ROM)
Patsiomitou, S. (2008a). The construction of the number φ and the Fibonacci sequence using “The Geometer's Sketchpad v4” Dynamic Geometry software. Proceedings of the 1st Pan-Hellenic ICT Educational Conference, "Digital Material to support Primary and Secondary-level teachers' pedagogical work", p.307-315 Naoussa, 9-11 May 2008.(in Greek)
Patsiomitou, S., (2008b). The development of students’ geometrical thinking through transformational processes and interaction techniques in a dynamic geometry environment. Issues in Informing Science and Information Technology journal. Vol.5 pp.353-393. Available on line http://iisit.org/IssuesVol5.htm
Patsiomitou, S. (2008c) Linking Visual Active Representations and the van Hiele model of geometrical thinking. In Yang, W-C,
Majewski, M., Alwis T. and Klairiree, K. (Eds.) “Enhancing Understanding and Constructing Knowledge in Mathematics with Technology”.Proceedings of the 13th Asian Conference in Technology in Mathematics. pp 163-178. Available on line http://atcm.mathandtech.org/EP2008/pages/regular.htm
Patsiomitou, S. (2008d) Custom tools and the iteration process as the referent point for the construction of meanings in a DGS environment. In Yang, W-C, Majewski, M., Alwis T. and Klairiree, K. (Eds.) Proceedings of the 13th Asian Conference in Technology in Mathematics. pp. 179-192.Available on line http://atcm.mathandtech.org/EP2008/pages/regular.html
Patsiomitou, S. (2008e) Do geometrical constructions affect students algebraic expressions? In Yang, W-C, Majewski, M., Alwis T. and Klairiree, K. (Eds.) Proceedings of the 13th Asian Conference in Technology in Mathematics. pp 193-202. ISBN 978-0-9821164-1-8. Bangkok, Thailand: Suan Shunanda Rajabhat University.
Patsiomitou, S. (2009a) The Impact of Structural Algebraic Units on Students’ Algebraic Thinking in a DGS Environment. Electronic Journal of Mathematics and Technology (eJMT), 3(3), 243-260. ISSN 1933-2823
Patsiomitou, S. (2009b) Learning Mathematics with The Geometer’s Sketchpad v4. Klidarithmos Publications. Volume B. ISBN: 978-960-461-309-0.
Patsiomitou, S. (2010). Building LVAR (Linking Visual Active Representations) modes in a DGS environment at the Electronic Journal of Mathematics and Technology (eJMT), pp. 1-25, Issue 1, Vol. 4, February, 2010, ISSN1933-2823.
Patsiomitou, S. (2011) Theoretical dragging: A non-linguistic warrant leading to dynamic propositions. In Ubuz, B (Ed.). Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, Vol. 3, pp. 361-368. Ankara, Turkey: PME. ISBN 978-975-429-297-8
Patsiomitou, S. (2012a). The development of students’ geometrical thinking through transformational processes and interaction techniques in a dynamic geometry environment. PhD thesis. University of Ioannina (December 2012).https://www.didaktorika.gr/eadd/handle/10442/35816
Patsiomitou, S. (2012b) A Linking Visual Active Representation DHLP for student’s cognitive development. Global Journal of Computer Science and Technology, Vol. 12 Issue 6, March 2012. pp. 53-81. ISSN 9754350. Available at: http://computerresearch.org/index.php/computer/article/view/479/479
Patsiomitou, S. (2013) Students learning paths as ‘dynamic encephalographs’ of their cognitive development". Ιnternational journal of computers & technology [Online], 4(3) pp.802-806 (18 April 2013) https://doi.org/10.24297/ijct.v4i3.4207
Patsiomitou, S. (2014). Student’s Learning Progression Through Instrumental Decoding of Mathematical Ideas. Global Journal of Computer Science and Technology, Vol. 14 Issue 1,pp. 1-42. Online ISSN: 0975-4172. http://computerresearch.org/index.php/computer/article/view/41/41
Patsiomitou, S. (2018a). A dynamic active learning trajectory for the construction of number pi (π): transforming mathematics education. International Journal of Education and Research. 6 (8) pp. 225-248.
Patsiomitou, S. (2018b). An ‘alive’ DGS tool for students’ cognitive development. International Journal of Progressive Sciences and Technologies (IJPSAT) ISSN: 2509-0119. Vol. 11, No. 1. October 2018, pp. 35-54.
Patsiomitou, S. (2019). From Vecten’s Theorem to Gamow’s problem: building an empirical classification model for sequential instructional problems in geometry. Journal of Education and Practice. 10 (5) pp.1-23. DOI: 10.7176/JEP/10-5-01.
Parzysz, B. (1988). Knowing versus seeing: problems of the plane representation of space geometry figures. Educational Studiesin Mathematics, 19(1), 79–92.
Peirce, C.S. (1894). What is a sign? http://www.cspeirce.com/menu/library/bycsp/bycsp.htm. [obtained 16/08/07]
Peirce, C.S. (1933) Collected Papers. Vols 1 and 2. Cambridge, MA: Harvard University Press.
Peirce, C. (1955). Philosophical writings of Peirce. New York: Dover Publications
Piaget, J. (1952/1977). The origins of intelligence in children (M. Cook, Trans.). New York: International University Press.
Piaget, Jean (1953). The Origin of Intelligence in the Child (Margaret Cook, trans.) London: Routledge & Kegan Paul.
Piaget, J. (1970). Genetic Epistemology, W. W. Norton, New York.
Piaget, Jean (1972a). The Principles of Genetic Epistemology. London: Routledge & Kegan Paul.
Piaget, J. (1972b). Intellectual Evolution from Adolescence to Adulthood. Human Development, 15, 1-12. http://dx.doi.org/10.1159/000271225.
Piaget, J. (1985). The equilibration of cognitive structures (T. Brown and K. J. Thampy, trans.), Cambridge MA, Harvard University Press, (originally published in 1975).
Plato (360 Β.C.). The Republic
Portnoy, N., Grundmeier, T., Grahama, K. (2006). Students’ understanding of mathematical objects in the context of transformational geometry: Implications for constructing and understanding proofs. Journal of Mathematical Behavior 25. pp. 196–207.
Rabardel, P. (1995). Les hommes et les technologies, approche cognitive des instruments contemporains. Paris : Armand Colin.
Sfard, A. (1987). Two conceptions of mathematical notions: Operational and Structural. Proceedings of the 11th Conference of the International Group for the Psychology of Mathematics Education, Montreal, Canada, 162-169.
Sfard, A. (1989). Transition from Operational to Structural Conception: The notion of function revisited. In Proceedings of PME XIII, (pp.151–158), Paris, France.
Sfard, A. (1991). On the Dual Nature of Mathematical Conceptions: Reflections on processes and objects as different sides of the same coin, Educational Studies in Mathematics, 22, 1–36.
Sfard, A. (1992). Operational origins of mathematical objects and the quandary of reification - the case of function. In G. Harel & E. Dubinsky (Eds.), The Concept of Function: Aspects of Epistemology and Pedagogy, MAA Notes 25 (pp. 59-84). Washington DC: MAA.
Sfard, A. (2000) ‘Symbolizing mathematical reality into being, How mathematical discourse and mathematical objects create each other’, in P. Cobb, K.E. Yackel and K. McClain (eds.), Symbolizing and Communicating, Perspectives on Mathematical Discourse, Tools, and Instructional Design, Erlbaum, Mahwah, NJ, pp. 37-98.
Sedig, K., & Sumner, M. (2006). Characterizing interaction with visual mathematical representations. International Journal of Computers for Mathematical Learning, 11, 1-55. New York: Springer.
Stewart , S. (2008) Understanding Linear Algebra Concepts Through the Embodied, Symbolic and Formal Worlds of Mathematical Thinking. A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy of Science in Mathematics Education. The University of Auckland, 28 August, 2008.
Steketee, S., & Scher, D. (2016). Connecting functions in geometry and algebra. Mathematics teacher, 109(6) ,February 2016, 448-455
Sträßer, R. Macros and Proofs (2003): Dynamical Geometry Software as an Instrument to Learn Mathematics (vol8) Proceedings of 11th International Conference on Artificial Intelligence in Education, Sydney Australia
Tall, D. O., Thomas, M. O. J., Davis, D., Gray, E., & Simpson, A. (2000). What is the object of the encapsulation of a process? Journal of Mathematical Behavior, 18(2), 223-241.
Trouche, L. (2004). Managing the complexity of the human/machine interaction in computerized learning environments: Guiding students’ command process through instrumental orchestrations. International Journal of Computers for Mathematical Learning 9, 281-307. Kluwer Academic Publishers.
Tchoshanov, M. (2013). Engineering of Learning: Conceptualizing e-Didactics. Moscow: UNESCO IITE
Verillon, P. & Andreucci, C. (2006). Artefacts and cognitive development: How do psychogenetic theories of intelligence help in understanding the influence of technical environments on the development of thought? In M. J. de Vries & I. Mottier (Eds.), International handbook of technology education reviewing the past twenty years. Rotterdam: Sense Publisher
Verillon, P. & Rabardel, P. (1995) Cognition and artefacts: A contribution to the study of thought in relation to instrumented activity. European Journal of Psychology of Education, 10(1), 77-101.
Vergnaud, G. (1987) “Conclusion.” In C. Janvier (ed.) Problems of Representation in Mathematics Learning and Problem Solving, Hillsdale, NJ: Erlbaum.
Vergnaud, G. (1996). Au fond de l’apprentissage, la conceptualisation, In R. Noirfalise, & M.J. Perrin (Eds.), Actes de l’école d’été de didactique des mathématiques (pp. 174–185). ClermontFerrand: IREM, Université de Clermont-Ferrand II.
Vergnaud, G. (1998). A Comprehensive Theory of Representation for Mathematics Education. Journal of Mathematics Behavior, 17(2), 167-181.
Webpage [1]:
https://www.itd.cnr.it/telma/docs/Rep_Del_Draft3.pd
DOI: https://doi.org/10.29103/ijevs.v1i1.1416
Article Metrics
Abstract Views : 758 timesPDF Downloaded : 146 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Stavroula Patsiomitou