Efek Hepatoprotektor Ekstrak Etanol Kulit Melinjo terhadap Ekspresi Gen Alanine Aminotransferase 1 Hepar pada Kondisi Hiperurisemia
Abstract
Hiperurisemia dapat menginduksi disfungsionalitas pertukaran natrium dan kalsium dalam mitokondria yang akan menyebabkan produksi reactive oxygen species (ROS). Stres oksidatif berperan dalam penuaan, kerusakan DNA, oksidasi, produksi sitokin inflamasi, dan apoptosis sel. Metabolisme asam urat dikatalisis oleh xhantine oxidase (XO) menghasilkan hydrogen peroxide (H2O2) yang dapat menyebabkan terbentuknya jaringan parut pada hepar. Alanine amniotransferase (ALT) dikodekan oleh gen ALT1/GPT yang diekspresikan oleh sel endotel, Kuffer dan hepatosit. Overekspresi gen ALT1 berkontribusi dalam meningkatkan kadar enzim ALT sebagai marker yang sensitif dan spesifik adanya injuri atau kerusakan hepar. Tujuan menilai efek hepatoprotektor ekstrak etanol kulit melinjo terhadap ekspresi gen alanine aminotransferase 1 hepar pada kondisi hiperurisemia. Metode penelitian ini merupakan penelitian deskriptif yang dilakukan dengan metode telaah literature. Data dan informasi dikumpulkan dari beberapa penelitian yang sudah dilakukan sebelumnya. Hasil ekstrak etanol kulit melinjo mengandung flavonoid sebagai antioksidan, efek hepatoprotektor ekstrak etanol kulit melinjo terbukti dengan menurunkan stress oksidatif dan biomarker inflamasi melalui mekanisme inhibitor terhadap pembentukan XO dan adenosine deaminase (ADA) sehingga menyebabkan penurunan kadar dari asam urat dan melalui penghambatan terhadap terbentuknya XO akan menyebabkan pembentukan ROS menjadi terhambat sehingga kerusakan hepar dapat diminimalisir dan tidak terjadi overekspresi gen ALT1 pada hepar. Kesimpulan kandungan flavonoid pada ekstrak kulit melinjo terbukti berpotensi sebagai hepatoprotektor, dengan menimimalisir kadar enzim ALT akibat tidak terjadinya peningkatan ekspresi gen ALT1, flavonoid dapat memodulasi ROS dan reaksi inflamasi sehingga hepar lebih terproteksi dari kerusakan akibat keadaan hiperurisemia.
Keywords
Full Text:
PDFReferences
Smith E., Lyn March., Global Prevalenceof Hyperuricemia : A systematic Review of Population-Based Epidemiological Studies. Arthritis Rheumatol.2015;67 suppl 10.
Jiang, L. L., Gong, X., Ji, M. Y., Wang, C. C., Wang, J. H., et al. Bioactive compounds from plant-based functional foods: A promising choice for the prevention and management of hyperuricemia. In Foods. MDPI (Multidisciplinary Digital Publishing Institute).2020;Vol. 9, Issue 8.https://doi.org/10.3390/foods9080973.
Ni, Q., Lu, X., Chen, C., Du, H., & Zhang, R. Risk factors for the development of hyperuricemia: A STROBE-compliant cross-sectional and longitudinal study. Medicine. 2019a;98(42):e17597. https://doi.org/10.1097/MD.0000000000017597.
Shan, R., Ning, Y., Ma, Y., Gao, X., Zhou, Z., Jin, C., et al. Incidence and risk factors of hyperuricemia among 2.5 million chinese adults during the years 2017–2018. International Journal of Environmental Research and Public Health. 2021; 18(5):1–11. https://doi.org/10.3390/ijerph18052360.
Jamnik, J., Rehman, S., Blanco Mejia, S., de Souza, R. J., Khan, T. A., Leiter, L. A., et al. Fructose intake and risk of gout and hyperuricemia: a systematic review and meta-analysis of prospective cohort studies.2016. https://doi.org/10.1136/bmjopen-2016.
Kelley, E. E., Khoo, N. K. H., Hundley, N. J., Malik, U. Z., Freeman, B. A., & Tarpey, M. M. Hydrogen peroxide is the major oxidant product of xanthine oxidase. Free Radical Biology and Medicine. 2010;48(4):493–8. https://doi.org/10.1016/j.freeradbiomed.2009.11.012.
Lanaspa, M. A., Sanchez-Lozada, L. G., Cicerchi, C., Li, N., Roncal-Jimenez, C. A., Ishimoto, T., et al. Uric Acid Stimulates Fructokinase and Accelerates Fructose Metabolism in the Development of Fatty Liver. PLoS ONE. 2012;7(10). https://doi.org/10.1371/journal.pone.0047948.
Liu, N., Sun, Q., Xu, H., Yu, X., Chen, W., Wei, H., et al. Hyperuricemia induces lipid disturbances mediated by LPCAT3 upregulation in the liver. FASEB Journal. 2020 ;34(10):13474–93. https://doi.org/10.1096/fj.202000950R.
Xie, D., Zhao, H., Lu, J., He, F., Liu, W., Yu, W., et al. High uric acid induces liver fat accumulation via ROS/JNK/AP-1 signaling. American Journal of Physiology - Endocrinology and Metabolism. 2021;320(6):E1032–43. https://doi.org/10.1152/AJPENDO.00518.2020.
Yang, C., Yang, S., Xu, W., Zhang, J., Fu, W., & Feng, C. Association between the hyperuricemia and nonalcoholic fatty liver disease risk in a Chinese population: A retrospective cohort study. PLoS ONE. 2017;12(5). https://doi.org/10.1371/journal.pone.0177249.
Ewid, M., Sherif, H., Allihimy, A. S., Alharbi, S. A., Aldrewesh, D. A., Alkuraydis, S. A., et al. AST/ALT ratio predicts the functional severity of chronic heart failure with reduced left ventricular ejection fraction. BMC Research Notes. 2020;13(1). https://doi.org/10.1186/s13104-020-05031-3.
Cahyani Ratna Sari, D., Soraya Soetoko, A., Mansyur Romi, M., Tranggono, U., Ananda Wahyu Setyaningsih, W., & Arfian, N. Uric acid induces liver fibrosis through activation of inflammatory mediators and proliferating hepatic stellate cell in mice.2020.
Cho, I. J., Oh, D. H., Yoo, J., Hwang, Y. C., Ahn, K. J., Chung, H. Y., et al. Allopurinol ameliorates high fructose diet induced hepatic steatosis in diabetic rats through modulation of lipid metabolism, inflammation, and ER stress pathway. Scientific Reports. 2021;11(1). https://doi.org/10.1038/s41598-021-88872-7.
Childs, L., & Dow. Allopurinol-induced hepatomegaly. BMJ Case Reports. 2012. https://doi.org/10.1136/bcr-2012-007283
Prajnaparamita, K., & Susanti, S. Karakter morfologis dan perkembangan anatomis biji melinjo (Gnetum gnemon L.). Jurnal Biogenesis.2021;17(2).
Sari, N. K., Soemardji, A. A., & Fidrianny, I. The Effect of Melinjo (Gnetum gnemon L.) Leaves and Melinjo Peel Extracts on Induced-Hyperuricemia Male Rats Model Kajian Pengaruh Ekstrak Daun dan Kulit Buah Melinjo pada Tikus Jantan Hiperurisemia Biji Melinjo (Gnetum Gnemon L.). In Journal of Medicine and Health The Effect of Melinjo. 2019;Vol. 2, Issue 4.
Endang Zainal Hasan, A., Ayu Puspita, C., & Setiyono, A. Efektivitas Ekstrak Kulit Melinjo (Gnetum gnemon) sebagai Penurun Kadar Asam Urat pada Tikus Putih (Rattus norvegicus) Hiperurisemia (Effectiveness of Gnetum gnemon Peel Extract as an Antihyperuricemic in White Rats Rattus norvegicus). Curr. Biochem. 2020;7(1):21–8.
Harahap AM. Efek Pemberian Ekstrak Etanol Kulit Melinjo (Gnetum gnemon) terhadap Ekspresi Gen XDH, ABCG2 dan Kadar Asam Urat pada Tikus Galur Wistar Model Hiperurisemia.2022.
Serafini, M., Peluso, I., & Raguzzini, A. 3rd International Immunonutrition Workshop Session 1: Antioxidants and the immune system Flavonoids as anti-inflammatory agents. 2010. https://doi.org/10.1017/S002966511000162X.
Rina, A., Eff, Y., Rahayu, S. T., & Syachfitri, R. D. Uji Aktivitas Penghambatan Xantin Oksidase secara In-Vitro oleh Isolat 6,4’-Dihidroksi-4-Metoksibenzofenon-2-O-β-D Glukopiranosida(C 20 H 22 O 10 ) yang Diisolasi dari Mahkota Dewa (Phaleria macrocarpa (Scheff.) Boerl). 2016;Vol. 3, Issue 1.
Chittoor, G., & Voruganti, V. S. Hyperuricemia and Gout. Principles of Nutrigenetics and Nutrigenomics: Fundamentals of Individualized Nutrition. 2020;389–94. https://doi.org/10.1016/B978-0-12-804572-5.00053-7.
Zhou, M., Yang, N., Xing, X., Chang, D., Li, J., Deng, J., et al. Obesity interacts with hyperuricemia on the severity of non-alcoholic fatty liver disease. BMC Gastroenterology. 2021;21(1). https://doi.org/10.1186/s12876-021-01615-w.
Stewart, D. J., Langlois, V., & Noone, D. Hyperuricemia and hypertension: Links and risks. In Integrated Blood Pressure Control. Dove Medical Press Ltd. 2019;Vol. 12:43-62. https://doi.org/10.2147/IBPC.S184685.
Skoczyńska, M., Chowaniec, M., Szymczak, A., Langner-Hetmańczuk, A., Maciążek-Chyra, B., & Wiland, P. Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Pathophysiology of hyperuricemia and its clinical significance-a narrative review. Reumatologia. 2020a;58:312-23. https://doi.org/10.5114/reum.2020.100140.
Gao, Y., Yu, Y., Qin, W., Fan, N., Qi, Y., Chen, H., et al. Uricase-deficient rats with similarly stable serum uric acid to human’s are sensitive model animals for studying hyperuricemia. PLoS ONE. 2022;17(3):1–19. https://doi.org/10.1371/journal.pone.0264696.
Francisco, A. R. L. Definisi Asam Urat. Journal of Chemical Information and Modeling. 2013;53(9):1–17.
Skoczyńska, M., Chowaniec, M., Szymczak, A., Langner-Hetmańczuk, A., Maciążek-Chyra, B., & Wiland, P. Pathophysiology of hyperuricemia and its clinical significance – a narrative review. Reumatologia. 2020b;58(5):312–23. https://doi.org/10.5114/reum.2020.100140.
FitzGerald, J. D., Dalbeth, N., Mikuls, T., Brignardello-Petersen, R., Guyatt, G., Abeles, A. M., et al. ACR guideline for management of gout 2020 American College of Rheumatology Guideline for the Management of Gout. Arthritis Care & Research. 2020;72(6):744–60. https://doi.org/10.1002/acr.24180.
Nakagawa, T., Lanaspa, M. A., & Johnson, R. J. The effects of fruit consumption in patients with hyperuricaemia or gout. Rheumatology (United Kingdom). 2019;58(7):1133-41. https://doi.org/10.1093/rheumatology/kez128.
Eleftheriadis, T., Golphinopoulos, S., Pissas, G., & Stefanidis, I. Asymptomatic hyperuricemia and chronic kidney disease: Narrative review of a treatment controversial. In Journal of Advanced Research. Elsevier B.V. 2017;Vol. 8, Issue 5:555-60. https://doi.org/10.1016/j.jare.2017.05.001.
Ni, Q., Lu, X., Chen, C., Du, H., & Zhang, R. Risk factors for the development of hyperuricemia: A STROBE-compliant cross-sectional and longitudinal study. Medicine. 2019b;98(42):e17597. https://doi.org/10.1097/MD.0000000000017597.
Villegas, R., Xiang, Y. B., Elasy, T., Xu, W. H., Cai, H., Cai, Q., et al. Purine-rich foods, protein intake, and the prevalence of hyperuricemia: The Shanghai Men’s Health Study. Nutrition, Metabolism and Cardiovascular Diseases. 2012;22(5):409-16. https://doi.org/10.1016/j.numecd.2010.07.012.
Mandal AK, Mount DB. The molecular physiology of uric acid homeostasis. Annu Rev Physiol. 2015;77:323-45. doi: 10.1146/annurev-physiol-021113- 170343.
Benn CL, Dua P, Gurrell R, Loudon P, Pike A, Ian Storer R, et.al. Physiology of hyperuricemia and urate-lowering treatments. In Frontiers in Medicine. Frontiers Media S.A. 2018; Vol. 5, Issue may.https://doi.org/10.3389/fmed.2018.00160.
National Center for Biotechnology Information. PubChem Compound Summary for CID 1175, Uric acid. Retrieved September 16, 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/Uric-acid.
Ratautaite, V., Samukaite-Bubniene, U., Plausinaitis, D., Boguzaite, R., Balciunas, D., Ramanaviciene, A., et al. Molecular Sciences Molecular Imprinting Technology for Determination of Uric Acid. 2021. https://doi.org/10.3390/ijms22095032.
Chen, S., Guo, X., Yu, S., Sun, G., Yang, H., Li, Z., et al. Association between Serum Uric Acid and Elevated Alanine Aminotransferase in the general population. International Journal of Environmental Research and Public Health. 2016;13(9). https://doi.org/10.3390/ijerph13090841.
Maiuolo, J., Oppedisano, F., Gratteri, S., Muscoli, C., & Mollace, V. Regulation of uric acid metabolism and excretion. International Journal of Cardiology. 2016b;213:8–14. https://doi.org/10.1016/j.ijcard.2015.08.109.
Cox, C. L., Stanhope, K. L., Schwarz, J. M., Graham, J. L., Hatcher, B., Griffen, S. C., et al. Consumption of fructose- but not glucose-sweetened beverages for 10 weeks increases circulating concentrations of uric acid, retinol binding protein-4, and gamma-glutamyl transferase activity in overweight/obese humans. Nutrition and Metabolism. 2012b;9. https://doi.org/10.1186/1743-7075-9-68.
Leˆdepartment, K.-A. Metabolic Effects of Fructose and the Worldwide Increase in Obesity. 2010. https://doi.org/10.1152/physrev.00019.2009.-While.
He, L., Babar, G. S., Redel, J. M., Young, S. L., Chagas, C. E., Moore, W., et al. Chapter Fructose Intake: Metabolism and Role in Diseases. 2021. www.intechopen.com.
Rapa, S. F., di Iorio, B. R., Campiglia, P., Heidland, A., & Marzocco, S. Inflammation and oxidative stress in chronic kidney disease—potential therapeutic role of minerals, vitamins and plant-derived metabolites. In International Journal of Molecular Sciences 2020;Vol. 21, Issue 1. MDPI AG. https://doi.org/10.3390/ijms21010263.
Roumeliotis, S., Roumeliotis, A., Dounousi, E., Eleftheriadis, T., & Liakopoulos, V. Dietary antioxidant supplements and uric acid in chronic kidney disease: A review. In Nutrients. 2019;Vol. 11, Issue 8. MDPI AG. https://doi.org/10.3390/nu11081911.
Su, H. Y., Yang, C., Liang, D., & Liu, H. F. Research Advances in the Mechanisms of Hyperuricemia-Induced Renal Injury. In BioMed Research International. Hindawi Limited. 2020. https://doi.org/10.1155/2020/5817348.
Cahyani, D., Sari, R., Nofrienis, R., Romi, M. M., Tranggono, U., Ayu, E., et al. Uric Acid Induces Inflammation, Hepatocyte Apoptosis and Deterioration of Liver Function. In Malaysian Journal of Medicine and Health Sciences. 2020;Vol. 16, Issue SUPP3.
Kimura, Y., Tsukui, D., & Kono, H. Uric acid in inflammation and the pathogenesis of atherosclerosis. In International Journal of Molecular Sciences. 2021;Vol. 22, Issue 22. MDPI. https://doi.org/10.3390/ijms222212394.
Jaruvongvanich, V., Ahuja, W., Wirunsawanya, K., Wijarnpreecha, K., & Ungprasert, P. Hyperuricemia is associated with nonalcoholic fatty liver disease activity score in patients with nonalcoholic fatty liver disease: A systematic review and meta-analysis. European Journal of Gastroenterology and Hepatology. 2017;29(9):1031-35. https://doi.org/10.1097/MEG.0000000000000931.
Li, K., Neumann, K., Duhan, V., Namineni, S., Hansen, A. L., Wartewig, T., et al. The uric acid crystal receptor Clec12A potentiates type I interferon responses. Proceedings of the National Academy of Sciences of the United States of America. 2019;116(37):18544-49. https://doi.org/10.1073/pnas.1821351116.
Huang, L., He, X., Peng, W., He, X., Xu, B., Xu, H., et al. Hyperuricemia induces liver injury by upregulating HIF-1α and inhibiting arginine biosynthesis pathway in mouse liver and human L02 hepatocytes. Biochemical and Biophysical Research Communications. 2022b;617:55–61. https://doi.org/10.1016/J.BBRC.2022.05.096.
Liu, R., Pan, X., & Whitington, P. F. Increased hepatic expression is a major determinant of serum alanine aminotransferase elevation in mice with nonalcoholic steatohepatitis. Liver International. 2009b;29(3):337–43. https://doi.org/10.1111/j.1478-3231.2008.01862.x.
Molla, N. H., Kathak, R. R., Sumon, A. H., Barman, Z., Mou, A. D., Hasan, A., et al. Assessment of the relationship between serum uric acid levels and liver enzymes activity in Bangladeshi adults. Scientific Reports. 2021;11(1). https://doi.org/10.1038/s41598-021-99623-z.
Adhityasmara D, & Advistasari YD. Aktivitas Antihiperurisemia Mikroenkapsulasi Ekstrak Kulit Melinjo (Gnetum gnemon L) secara In Vivo. In Bekti Nugraheni . Journal poltektegal. 2020;9(1). http://ejournal.poltektegal.ac.id/index.php/parape.
Wulandari, S., dan Muntholib. Inhibisi xantin oksidase oleh ekstrak etanol kulit melinjo (Gnetum gnemon) relatif terhadap allopurinol.2012.
Gherghina, M. E., Peride, I., Tiglis, M., Neagu, T. P., Niculae, A., & Checherita, I. A. Uric Acid and Oxidative Stress—Relationship with Cardiovascular, Metabolic, and Renal Impairment. In International Journal of Molecular Sciences. 2022;Vol. 23, Issue 6. MDPI. https://doi.org/10.3390/ijms23063188.
Shen, N., Wang, T., Gan, Q., Liu, S., Wang, L., & Jin, B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chemistry. 2022;383:132531. https://doi.org/10.1016/J.FOODCHEM.2022.132531.
Sabaan, W., Ali Dahbul, N., & Kasari, E. Testing Antioxidant Activity and Total Flavonoid Levels in Ethanol Extracts of Melinjo Seeds and Skin (Gnetum gnemon L.) Using DPPH Method.2022.
Chang, Y. H., Chiang, Y. F., Chen, H. Y., Huang, Y. J., Wang, K. L., Hong, Y. H., et al. Anti-inflammatory and anti-hyperuricemic effects of chrysin on a high fructose corn syrup-induced hyperuricemia rat model via the amelioration of urate transporters and inhibition of nlrp3 inflammasome signaling pathway. Antioxidants. 2021;10(4). https://doi.org/10.3390/antiox10040564.
Liu, R., Pan, X., & Whitington, P. F. Increased hepatic expression is a major determinant of serum alanine aminotransferase elevation in mice with nonalcoholic steatohepatitis. Liver International. 2009a;29(3):337-43. https://doi.org/10.1111/j.1478-3231.2008.01862.x.
M.F., A. R., H. Y., W., C.D., G., et al. Fructose-related hepatic atp depletion induces hyperuricemia in healthy volunteers and patients with biopsy-proven nonalcoholic fatty liver disease. Hepatology. 2011;66.
Wang, D. D., Sievenpiper, J. L., de Souza, R. J., Chiavaroli, L., Ha, V., Cozma, A. I., et al. The Effects of Fructose Intake on Serum Uric Acid Vary among Controlled Dietary Trials 1-4. The Journal of Nutrition Nutritional Epidemiology. 2017. https://doi.org/10.3945/jn.111.151951.
DOI: https://doi.org/10.29103/averrous.v9i1.10936
Article Metrics
Abstract Views : 363 timesPDF Downloaded : 13 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Cindy Mentari
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Print ISSN | : |
2477-5231 |
Online ISSN |
: |
2502-8715 |
Fakultas Kedokteran Universitas Malikussaleh
Kampus Fakultas Kedokteran Universitas Malikussaleh, Jl. Meunasah, Uteunkot Cunda, Lhokseumawe, 24351, Provinsi Aceh, Tel/fax : 081376575984, Email: averrous@unimal.ac.id
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.