Desulfurisasi dan Penyerapan Merkuri secara Simultan dari Batubara Peringkat Rendah (Aceh Barat) untuk Aplikasi Power Plant dengan Adsorben Zeolit
Abstract
Adsorpsi emisi pembakaran batubara dengan menggunakan adsorben zeolit pada jenis briket dan pulverized telah dilakukan. Penelitian ini bertujuan untuk mengurangi emisi gas SO2 dan logam Hg yang berbahaya apabila rilis di udara bebas dengan cara menggunakan adsorben zeolit untuk kecendrungan emisi menjadi bottom ash yang lebih terkendali. Pengujian ini fokus mengevaluasi rasio optimal rasio adsorben terhadap jumlah batubara terhadap performa penyerapan, sehingga penggunaannya tidak mengurangi nilai bakar batubara. Prosedur pembakaran ekspremintal awal dimulai dari pencampuran batubara dan zeolit dengan rasio 4%, 6%, 8%, 10% dan 12% yang dibagi dalam bentuk briket dan pulverized. Kedua jenis sampel dibakar secara berurutan pada electrical stainless steel reaction tube furnace pada kondisi temperatur pembakaran Fludized Bed Coal Combustion yaitu 600oC, 700oC, dan 800oC dengan laju alir udara disesuaikan. Flue gas hasil pembakaran yang keluar dari outlet dianalisa menggunakan Gas Combustion and Emission Analyzer (E4400, E-Instrument). Logam Hg yang yang diserap oleh zeolit pada Bottom Ash dianalisa menggunakan NIC Mercury SP Anlayzer. Hasil pengujian menunjukan kinerja zeolit terhadap kapasitas penyerapan logam Hg untuk pembakaran batubara pulverized pada temperatur pembakaran 600oC, 700oC dan 800oC masing-masing didapat pada angka 33,6, 19,25 dan 9,97 ppb/gr serta pada pembakaran briket batubara masing-masing didapat sebesar 59,83, 37,8 dan 24,22 ppb/gr. Secara simultan untuk mengurangi emisi SO2 dan logam berat Hg pada fly ash untuk temperatur pembakaran Fludized Bed Coal Combustion rasio optimum berkisar antara 6%-8% adsoben zeolit dari jumlah massa batubara Kaway XVI Kabupaten Aceh Barat.
Kata kunci:adsorpsi, fluidized bed combustion, zeolit, briket, pulverized
Full Text:
PDFReferences
Bailey, D.W. and P.H.M Feron. 2005. Post-combustion Decarbonisation Processes. Oil and Gas Science and technology Rev. IFP, Vol. 60, No. 3.
Yan Liu, Teressa M Bison, 2010, Recent developments in novel sorbents for flue gas clean up Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada.
Giang, A., Stokes, L. C., Streets, D.G.,Corbitt, et al .(2015). Impact of the minamata convention on mercury emission and global deposition from coal-fired power generation in Asia. Environmental Science and Technology, 49(9), pp. 5326-5335
Mahidin, Khairil, Adisalamun dan Asri Gani, 2012, Modeling and Simulation on NOx and N2O Formation in Co-combustion of Low-rank Coal and Palm Kernel Shell Jurnal Rekayasa dan Lingkungan, Volume 9 No.2, 2012.
Wilcox, J., E. Rupp, S.C. Ying, D. Lim, A.S. Negreira, A. Kirchofe, F. Feng, K. Lee. 2012. Mercury Adsorption and Oxidation in Coal Combustion and Gasification Processes. Elsevier Science Publishers B.V. Amsterdam. International Journal of Coal Geology 90-91 (2012) 4–20.
Saptoadi, H., 2004, Combustion Characteriastics Of Fuel Briquettes Made From Wooden Saw Dust And Lignite. The International Workshop On Biomass And Clean Fossil Fuel Power Plan Technology 2004. Jakarta Indonesia. pp186-199.
Yao,H., Naruse,I., 2005. Control of trace metal emissions by sorbents during coal combustion, Department of Ecological Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441-8580, Japan
Wang,J., Zang,Y., Han, L., Chang, L., Bao, W., 2013 Simultaneous Removal of Hydrogen Sulfide and Mercury from Simulated Syngas by Iron Based Sorbents
Karakas, E., P. Grammelis, G. Skodras, P. Vourliotis. 2013. Fluidized Bed Combustion With The Use of Greek Solid Fuels. Thermal Science: Vol. 7, No. 2, pp. 33-42.
Leckner, B. 2013. Fluidized Bed Combstion Research and Development in Sweden. Thermal Science, Vol. 7, No. 2, pp. 3 – 16.
Speight. James G, 1994, The Chemistry and Technology of Coal, Marcel Dekker. Inc. New York. Page-569.
Jyh-Cheng Chen, Ming-Yen Wey, Yao-Chi Lin. The Adsorption of Heavy Metals by Different Sorbents Under Various Incineration Conditions
Muchjidin, 2006. Pengembalian Mutu dalam Industri Batubara, Jilid 1 Edisi Pertama, ITB: Bandung.
Yan Liu, Teressa M Bison, 2010, Recent developments in novel sorbents for flue gas clean up. Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada.
Chen, J., Wey, M., & Lin, Y. (1998). The Adsorption of Heavy Metals by Different Sorbents Under Various Incineration Conditions. Chemosphere, Vol. 37, No. 13. Elsevier Science Ltd.
Xu, M., R. Yan, C. Zheng, Y. Qiao, J. Han, C. Sheng. 2013. Status Of Trace Element Emission In A Coal Combustion Process: A Review. Fuel Processing Technology 85 (2003) 215– 237.
Maurstad, O., H. Herzog, O. Bolland, J. Beér. 2005. Impact of Coal Quality and Gasifier Technology on IGCC Performance. Norwegian University of Science and Technology (NTNU), Norway.
Oka, S.N. 2004. Fluidized Bed Combustion. Marcel Dekker Inc., New York.
Bhatnagar, A. and A.K. Minocha. 2006. Conventional and Non-conventional Adsorbents for Removal of Pollutants from Water – A Review. Indian Journal of Chemical Technology.
DOI: https://doi.org/10.29103/jtku.v7i1.1171
Article Metrics
Abstract Views : 327 timesPDF Downloaded : 27 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Yuanda Wattimena, Asri Gani, Medyan Riza
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
E-ISSN:2580-5436 |
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. |