The Effect of Distributed Generator Injection with Different Numbers of Units on Power Quality in the Electric Power System
Abstract
Distributed Generation (DG) is a small capacity generator located in the electricity distribution system and is usually placed on buses that are connected directly to the load. Placement of distributed generation is one of the technical efforts to reduce voltage drop and power losses in the system. In addition, load flow analysis is a study to plan and determine the amount of power in an electric power system. The results of power losses after adding distributed generation were the best in the fifth experiment on bus 149, where the system experienced a total loss of active power (P) previously of 720,822 kW, to 682,939 kW and total loss of reactive power (Q) previously of 530.02 kVar, to 405.835 kVar. From the results of the calculation of the power flow using ETAP software (Electrical Transient Analyzer Program). So, it can be concluded that the electrical network system can be said to be good. The results obtained are the more DG (wind turbine generator) that is input into the bus it will reduce the voltage drop that occurs. After simulating the overall voltage drop, it still meets the standards according to the results of the Text Report on ETAP.
Keywords
Full Text:
PDFReferences
S., Yunus, S., & . A. (2014). Analisa Pengaruh Integrasi Pembangkit Tersebar dalam Sistem Komposit. Jurnal Nasional Teknik Elektro, 3(1), 95. https://doi.org/10.25077/jnte.v3n1.61.2014
Albaroka, G., Elektro, T., Surabaya, U. N., Elektro, T., & Surabaya, U. N. (1987). analysis power loss on the distribution network of the barat jaya in the surabaya selatan using software ETAP 12.6. 72.
Artawa, I. N. C., Sukerayasa, I. W., & Dwi Giriantari, I. A. (2017). Analisa Pengaruh Pemasangan Distributed Generation Terhadap Profil Tegangan Pada Penyulang Abang Karangasem. Majalah Ilmiah Teknologi Elektro, 16(3), 79. https://doi.org/10.24843/mite.2017.v16i03p13
Bawan, E. K. (2012). Dampak Pemasangan Distributed Generation Terhadap Rugi-Rugi Daya. Jurnal Ilmiah Foritek, 2(21), 216–223.
Distribusi, J. (2012). Analisys placement of distributed generation. 1(1).
Elektro, J. T., Teknik, F., Semarang, U. N., & Fibers, P. (2015). Analysis of the powe flow of the electrical power system in the Texturizing Section of PT Asia Pacific Fibers tbk Kendal using ETAP Power station 4.0 software. Jurnal Teknik Elektro, 7(1), 7–10.
Elektro, T. (2012). Effect Of Distributed Generation Installation On The Effect Of Applying Distributed Generation To Voltage. 13(1), 12–19.
Guseynov, A. M., & Akhundov, B. S. (n.d.). Defining Impact of Distributed Generation on Power System Stability. 122–125.
Luthfi, N. I., Yuningtyastuti, & Handoko, S. (2013). Optimasi Penempatan Distributed Generation Pada Ieee 30 Bus System Menggunakan Bee Colony Algorithm Metode. Transient, 2(3), 758–763.
Musaruddin, M., Munawir, A., & Hay, S. (2017). Pengaruh Pemasangan Pembangkit Terdistribusi ( Distributed Generation ) Terhadap Magnitude Arus Gangguan pada Sistem Distribusi Tenaga Listrik. 2(2502).
Permana, S. F. (2016). Analisis Pengaruh Pemasangan Distributed Generation Pada Jaringan Distribusi Pusdiklat Migas Cepu.
Thong, V. Van, Driesen, J., & Belmans, R. (2005). Interconnection of Distributed Generators and Their Influences on Power System. 6(1), 127–140.
Timur, K., Software, M., Aribowo, B. T., & Muksim, M. (2018). simulation and load flow analysis of interconection system. September, 626–633.
DOI: https://doi.org/10.29103/jreece.v1i2.5236
Article Metrics
Abstract Views : 343 timesPDF Downloaded : 142 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Robi Kurniawan, Ardiansyah Nasution, Arnawan Hasibuan, Muzamir Isa, Muskan Gard, Shrikant Vasantrao Bhunte
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.