Utilization of Molasses Waste as Activated Carbon for Adsorption of Rhodamine B from Synthetic Waste

Ali Nur Muhammad Zaidin Balatif, Muhammad Muhammad, Rizka Mulyawan

Abstract


The utilization of molasses waste as Rhodamine B adsorbent has been investigated by studying adsorption isotherm and adsorption kinetics. The sample used is a variation of the concentration of Rhodamine B 10, 25, and 50 mg/L for kinetics adsorption and 50 mg/L, 100 mg/L, 150 mg/L, 200 mg/L, and 250 mg/L for isotherm adsorption. Kinetic analysis adsorption being tested by pseudo-first-order and pseudo-second-order rate equation, as for the equilibrium equation being tested by Langmuir and Freundlich adsorption isotherms. Study shows that Langmuir equation model and pseudo-second-order are the most suitable to be applied. The adsorption constant is obtained of 1.1664 L/g and qmax of 221.8279 mg/g in Langmuir Equation. Whereas for pseudo second order equations obtained values of qe, exp and qe, cal which are slightly different. The qe, cal values obtained were 8.142 mg/g, 23.141 mg/g, and 53.895 mg/g for various concentrations.  K value is obtained with a range of 0.001754-0.000294 and a value of R2 with a range of 0.8249-0.995 for various concentration. Intraparticle diffusion in this study is not the only rate control measure due to the plot linear at each concentration does not cross the origin.


Keywords


Adsorption; Molasses; Rhodamine B

Full Text:

PDF

References


Arasteh, R., Masoumi, M., Rashidi, A. M., Moradi, L., Samimi, V., & Mostafavi, S. T. (2010). Adsorption of 2-nitrophenol by multi-wall carbon nanotubes from aqueous solutions. Applied Surface Science, 256(14), 4447–4455. https://doi.org/10.1016/j.apsusc.2010.01.057

Gad, H. M. H., & El-Sayed, A. A. (2009). Activated carbon from agricultural by-products for the removal of Rhodamine-B from aqueous solution. Journal of Hazardous Materials, 168(2–3), 1070–1081. https://doi.org/10.1016/j.jhazmat.2009.02.155

Ho, Y. S., & McKay, G. (1998). Sorption of dye from aqueous solution by peat. Chemical Engineering Journal, 70(2), 115–124. https://doi.org/10.1016/S1385-8947(98)00076-X

Hu, X. jiang, Wang, J. song, Liu, Y. guo, Li, X., Zeng, G. ming, Bao, Z. lei, Zeng, X. xia, Chen, A. wei, & Long, F. (2011). Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics. Journal of Hazardous Materials, 185(1), 306–314. https://doi.org/10.1016/j.jhazmat.2010.09.034

Joshi, S., Bharucha, C., Jha, S., Yadav, S., Nerurkar, A., & Desai, A. J. (2008). Biosurfactant production using molasses and whey under thermophilic conditions. Bioresource Technology, 99(1), 195–199. https://doi.org/10.1016/j.biortech.2006.12.010

Jumasiah, A., Chuah, T. G., Gimbon, J., Choong, T. S. Y., & Azni, I. (2005). Adsorption of basic dye onto palm kernel shell activated carbon: Sorption equilibrium and kinetics studies. Desalination, 186(1–3), 57–64. https://doi.org/10.1016/j.desal.2005.05.015

Langmuir, I. (1917). The constitution and fundamental properties of solids and liquids. Part II.-Liquids. Journal of the Franklin Institute, 184(5), 721. https://doi.org/10.1016/s0016-0032(17)90088-2

Mahatmanti, F. W., Rengga, W. D. P., Kusumastuti, E., & Nuryono. (2017). Selective Adsorbent of Rhodamine B from Aqueous Solution. 29(2), 283–286.

Malik, P. K. (2003). Use of activated carbons prepared from sawdust and rice-husk for adsoprtion of acid dyes: A case study of acid yellow 36. Dyes and Pigments, 56(3), 239–249. https://doi.org/10.1016/S0143-7208(02)00159-6

McKay, G., El-Geundi, M., & Nassar, M. M. (1997). Equilibrium studies for the adsorption of dyes on bagasse pith. Adsorption Science and Technology, 15(4), 251–270. https://doi.org/10.1177/026361749701500401

Muhammad. (2014). Penyerapan β-Karoten Menggunakan Karbon Aktif Tempurung Kelapa Sawit : Kajian Kinetika. Jurnal Teknologi Kimia Unimal, 3(2), 53–63.

Muhammad, Chuaha, T. G., Robiaha, Y., Surayaa, A. R., & Choonga, T. S. Y. (2011). Single and binary adsorptions isotherms of Cd(ii) and Zn(ii) on palm kernel shell based activated carbon. Desalination and Water Treatment, 29(1–3), 140–148. https://doi.org/10.5004/dwt.2011.2210

Özcan, A. S., Erdem, B., & Özcan, A. (2005). Adsorption of Acid Blue 193 from aqueous solutions onto BTMA-bentonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 266(1–3), 73–81. https://doi.org/10.1016/j.colsurfa.2005.06.001

Özer, D., Dursun, G., & Özer, A. (2007). Methylene blue adsorption from aqueous solution by dehydrated peanut hull. Journal of Hazardous Materials, 144(1–2), 171–179. https://doi.org/10.1016/j.jhazmat.2006.09.092

Wardani, A. K., & Eka Pertiwi, F. N. (2013). Produksi Etanol dari Tetes Tebu oleh Saccharomyces cerevisiae Pembentuk Flok (NRRL – Y 265). AgriTECH, 33(2), 131–139. https://doi.org/10.22146/agritech.9810

Weber, T. W., & Chakravorti, R. K. (1974). Pore and solid diffusion models for fixed‐bed adsorbers. AIChE Journal, 20(2), 228–238. https://doi.org/10.1002/aic.690200204

Wierzbicka, E., Kuśmierek, K., Świątkowski, A., & Legocka, I. (2022). Efficient Rhodamine B Dye Removal from Water by Acid- and Organo-Modified Halloysites. Minerals, 12(3). https://doi.org/10.3390/min12030350

Wu, F. C., Tseng, R. L., & Juang, R. S. (2009). Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chemical Engineering Journal, 153(1–3), 1–8. https://doi.org/10.1016/j.cej.2009.04.042




DOI: https://doi.org/10.29103/jreece.v4i1.14673

Article Metrics

 Abstract Views : 109 times
 PDF Downloaded : 36 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Ali Nur Muhammad Zaidin Balatif, Muhammad*, Rizka Mulyawan

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.