Matlab Simulation Using Kalman Filter Algorithm to Reduce Noise in Voice Signals
Abstract
Sound signals polluted by noise are a common problem in various audio applications, including communication, sound processing, and audio recording. In this article, proposes the use of Kalman Filter algorithm as an effective method to reduce noise in speech signals. Simulations are performed using Matlab software to implement the Kalman Filter algorithm on noise polluted voice signals. The study includes several important steps, including the input of noise-polluted speech signals and the implementation of the Kalman Filter to clean the signals. Simulation results are measured using commonly used audio quality metrics, such as Signal-to-Noise Ratio (SNR) and Mean Square Error (MSE), to evaluate the effectiveness of the algorithm. The results from the simulations show that the use of the Kalman Filter algorithm significantly improves the quality of noise-contaminated speech signals. These results indicate that this algorithm can be a potential solution to the problem of noise reduction in audio applications. In addition, the implementation in the Matlab environment allows for easy testing and adaptation of this algorithm for different types of audio applications. This research makes a positive contribution to the development of more efficient noise reduction techniques in speech signal processing, focusing on the use of the Kalman Filter algorithm and its implementation using Matlab software. The implications of this research can be potentially beneficial in improving the quality of sound signals in various audio application contexts.
Keywords
Full Text:
PDFReferences
Deng, L., Lee, L. J., Attias, H., & Acero, A. (2007). Adaptive Kalman Filtering And Smoothing For Tracking Vocal Tract Resonances Using A Continuous-Valued Hidden Dynamic Model. IEEE Transactions On Audio, Speech And Language Processing, 15(1), 13–23. Https://Doi.Org/10.1109/TASL.2006.876724
Editor, D. J. H. (N.D.). Arti Cial Intelligence Techniques For Satellite Image Analysis.
Fft, T., & Matlab, B. (2019). Mengidentifikasi Sinyal Suara Manusia Menggunakan Metode Fast Fourier. 42–50.
Harahap, N., & Kartika, K. (2022). Microcontroller-Based Gas Detection In Transformer Oil. International Journal Of Engineering, Science And Information Technology, 2(4), 119–126. Https://Doi.Org/10.52088/Ijesty.V2i4.380
Harianto, B. (N.D.). Utilization Of Smartphones As Human Machine Interface Displays For Conveyor Control Systems Logo Based ! Web Server. 255–264.
Hasan, E., Daud, M., & Yusdartono, H. M. (2023). Desain Kontrol Motor Brushless Direct Current ( BLDC ) Menggunakan Boost Converter. 20(2), 117–135.
Hasibuan, A., Daud, M., Marjuli, H., & Isa, M. (N.D.). Analysis Of The Effect Of Solar Temperature And Radiation On Characteristics IV On 170 WP Photovoltaic Module Based On Matlab Simulink.
Hasibuan, A., & Others. (2019). Analisis Pengaruh Jatuh Tegangan Terhadap Kerja Motor Induksi Tiga Fasa Berbasis Matlab. RELE (Rekayasa Elektrikal Dan Energi): Jurnal Teknik Elektro, 1(2), 70–76.
Iqbal, M., Walidainy, H., Elizar, E., Teknik, J., & Kuala, U. S. (2010). Analisis Filter Kalman Untuk Menghapus Noise Pada Sinyal Suara. Analisis Filter Kalman Untuk Menghapus Noise Pada Sinyal Suara.
Juslam, Roswaldi, S., Kartika, & Mulyadi. (2019). Penggunaan Modul Multiplexer CD74HC4067 Untuk Menambah Input Analog Pada Nodemcu ESP8266. Proceeding Seminar Nasional Politeknik Negeri Lhokseumawe, 3(1), 2598–3954.
Kecepatan, P., & Dc, M. (2021). Studi Analisa Kalman Filter Sebagai State Estimator Untuk Meningkatkan Akurasi. 03, 9–18.
Mata, K., & Per, K. (2006). Program Studi Teknik Elektro 2006. 3(031), 1–8.
Misriana, M., & Kartika, K. (2018). Alat Patroli Lingkungan Perkantoran Berbasis Radio Frequency Identification (Rfid). Prosiding Seminar Nasional Politeknik …, 2(1), 215–220.
Morgan, T., & Software, L. (2022). Sensor Noise And Straightforward Software Techniques To Reduce It Use Case : Monitoring The Water Level Of A Storm Drain.
Pasaribu, D. A., Hidayatno, A., & Santoso, I. (N.D.). Aplikasi Peredaman Derau Aktif Metode Phi Phase Shift Pada Kawasan Frekuensi.
Pratiwi, M. L., Dwiono, W., & Diono, M. (2017). Jurnal Politeknik Caltex Riau Modul Spektrum Sinyal Suara Dengan Menggunakan ARM Cortex STM32F401. 3(1), 20–26.
Safa, S., Mouhamed, B., & Adnen, C. (2017). The Real Time Implementation On DSP Of Speech Enhancement Based On Kalman Filter And Wavelet Thresholding. Indian Journal Of Science And Technology, 10(24), 1–7. Https://Doi.Org/10.17485/Ijst/2017/V10i24/115044
Salsabila, D. N., Fisika, P. S., Sains, F., Teknologi, D. A. N., Islam, U., & Syarif, N. (2022). Analisis Sound Level Meter Berbasis Arduino Dengan Implementasi Kalman Filter Analisis Sound Level Meter Berbasis Arduino.
Simbolon, F. C., & Sani, A. (2014). Sinyal Loudspeaker Menggunakan Filter Adaptif Kalman. 6(3), 151–156.
Sudaradjat, D., & Rosano, A. (2020). 9351-26703-1-Pb. 1(2).
Susilo, D., Murtianta, B., & Setiadi, A. T. W. (2019). Sistem Pensaklaran Pada Masukan Dan Keluaran Penguat Awal Audio. Techné : Jurnal Ilmiah Elektroteknika, 18(02), 147–154. Https://Doi.Org/10.31358/Techne.V18i02.218
Syahputra, E., Pelawi, Z., & Hasibuan, A. (2018). Analisis Stabilitas Sistem Tenaga Listrik Menggunakan Berbasis Matlab. Sisfo: Jurnal Ilmiah Sistem Informasi, 2(2).
Syarifuddin, A. N. A., Merdekawati, D. A., & Apriliani, E. (2018). Perbandingan Metode Kalman Filter, Extended Kalman Filter, Dan Ensambel Kalman Filter Pada Model Penyebaran Virus HIV/AIDS. Limits: Journal Of Mathematics And Its Applications, 15(1), 17. Https://Doi.Org/10.12962/Limits.V15i1.3344
Widiarto, W. (2012). Penapisan Sinyal Suara Berderau Menggunakan Tapis Adaptif Finite Impulse Response Pada File External Wav. 1(1), 13–19.
DOI: https://doi.org/10.29103/jreece.v4i1.13687
Article Metrics
Abstract Views : 100 timesPDF Downloaded : 43 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Fitra Permana Putra, Kartika, Nanda Sitti Nurfebruary, Misriana, Kerimzade G. S
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.