K Fold Cross Validation Analysis for Electricity Meter Classification at PLN Lhoksukon Using K-NN and SVM Methods
Abstract
Electricity consumption continues to increase every year in line with the increase in national economic growth. Predicting current electricity demand is important to understand the overall electricity supplied to each region. The problem is that currently, the electricity supply in various areas of Lhoksukon has not matched the needs of the community. In addition, problems can arise if the power generated is less than the load power requirements, causing energy shortages in an area. To find out whether the electricity provided is appropriate or not, a classification using Supervised Learning method is used. After classification, we will use K-fold Cross Validation to measure how good the accuracy is between the methods. This study will use 200 electricity meter data consisting of 150 test data and 50 training data with a composition of 75%: 25%. The testing process where the data process that has been divided is then carried out in the testing process where the data process is obtained from manual calculations. So that in this study get results in the form of the K-NN method with 99.3% accuracy, 100% precision, 99.29% recall and the SVM method with 94.00% accuracy, 94.00% precision, 100% recall. And to find out how well the performance of the method is based on Supervised Learning method, it will be checked using K-Fold Cross Validation with the results of K-NN 99.53% and SVM 96.00%, with the conclusion that the K-Nearest Neighbor method has a better accuracy rate.
Keywords
Full Text:
PDF (English)References
. Abdul Kadir., (2008). Tuntunan Praktis Belajar Database Menggunakan MySQL, C.V. Andi Ofiset. Yogyakarta.
. Arifin, Z. W. J., (2019). Penerapan Metode KNN (K-Nearest Neighbor) Dalam Sistem Pendukung Keputusan Penerima Kip (Kartu Indonesia Pintar) Di Desa Pandean Berbasis Web Dan Mysql. NJCA-volume 4, 27-34.
. Azizah, N., Firdaus, M.R., Resti, S., Fajar, I., (2023), Penerapan Algoritma Klasifikasi K-Nearest Neighborpada Penyakit Diabetes, Seminar Nasional Statistika Aktuaria II, Universitas Padjajaran, 2988-1900, https://prosidingsnsa.statistics.unpad.ac.id/?journal=prosidingsnsa&page=article&op=view&path%5B%5D=344&path%5B%5D=315
. Bhavsar, H., & Panchal, M. H. (2012). A Review on Support Vector Machine for Data Classification. Internasional Journal of Advanced Research in Computer Engineering & Technology(IJARCET).
. Daftar Wilayah dan Kode Pos Lhoksukon 2024, https://www.google.com/amp/s/kodepos.cektarif.com/amp/indonesia/desa/lhoksukon-011110, Diakses pada 2 Januari 2024.
. Darma, S., Yusmartato, & Akhiruddin. (2019). STUDI SISTEM PENERAAN KWH METER. In Journal of Electrical Technology (Vol.4, Issue 3).
. Dinata, R. K., Akbar, H., Hasdyna, N., (2020). Algoritma K-Nearest Neighbor Dengan Euclidean Distance Dan Manhattan Distance Untuk Klasifikasi Transportasi Bus. ILKOM Jurnal Ilmiah.106.
. Eliyen, K., Tolle, H., and Muslim, M. A., (2017), “KNearest Neighbor Untuk Klasifikasi Penilaian Pada Virtual Patient Case,” J. Arus Elektro Indones., vol. 3, no. 1, pp. 15–18.
. Fauzan, M., (2023), Penerapan Seleksi Fitur Untuk Klasifikasi Penerima Bantuan Sosial Pangkalan Sesai Menggunakan Metode Knearest Neighbor, Skripsi, UIN SUSKA RIAU, https://repository.uin-suska.ac.id/76139/1/repo_ojan.pdf.
. Han, J., dan Kamber, M., (2006). Data Mining Concepts and Techniques Second Edition. Morgan Kaufmann Publishers, San Francisco.
. Han, J., Kamber, M., Pei, J., (2011). Data Mining : Technique and Concepts 3rd ed. San Fransisco, CA, USA : Morgan Kaufmann.
. Irham, L. G., Adiwijaya, A., & Wisesty, U. N. (2019). Klasifikasi Berita Bahasa Indonesia Menggunakan Mutual Information dan Support Vector Machine. Jurnal Media Informatika Budidarma, 3(4), 284.
. https://doi.org/10.30865/mib.v3i4.1410.
. K. A., (2017). Support Vector Machines Succinctly.
. Kiron, D., Shockley, R., Kruschwitz, N., Finch, G., and Haydock, M., (2012). Analytics: The Widening Divide, MIT Sloan Management Review, 53(2).
. Larose, D. T., (2005). Discovering Knowledge in Data: An Introduction to Data Mining. Wiley, Chichester.
. Larose, D. T., (2005). Discovering Knowledge in Data. New Jersey: John Willey & Sons Inc.
. McLeod, Jr. R., dan Schell, G. P., (2007). Management Information System. 10th ed. Pearson Education, Inc.
. Muktafin, E. H., & Luthfi, E. T., (2020). Analisis Sentimen pada Ulasan Pembelian Produk di Marketplace Shopee Menggunakan Pendekatan Natural Language Processing. 32-42. https://doi.org/10.30864/eksplora.v10il.390
. Rahmiati, Irfan, D., Agustin, Hediyati, S., (2020), Aplikasi Pengukur Tingkat Sentimen Pelanggan Berdasarkan Komplain Pelanggan Pln Menggunakan Algoritma K-Nearest Neighbor, Jurnal Inovtek Polbeng: Seri Informatika, Vol. 5., No. 2.
. Refaeilzadeh, P., Tang, L., dan Liu, H., (2009). “Cross-Validation,” in Encyclopedia of database systems, Springer, pp. 532-538.
. Sadli, M., Fajriana., Fuadi, W., Ermatita., Pahendra, I., (2018). Penerapan Model K-Nearest Neighbors Dalam Klasifikasi Kebutuhan Daya Listrik Untuk masing-masing daerah di Kota Lhokseumawe. Jurnal ECOTIPE (Vol. 5, No.2).
. Sari, D. P., (2013). SISTEM PERHITUNGAN KWH METER LISTRIK PRABAYAR (LPB) UNTUK PELANGGAN BAYA 900 VA PT.PLN (PERSERO) AREA PALEMBANG. In Jurnal Teliska ISSN (Vol. 5, Issue 2). http://www.elib.unikom.ac.id.
. Santosa, B., (2007) Data Mining Teknik Pemanfaatan Data Untuk Keperluan Bisnis. Graha Ilmu : Yogyakarta.
. Simanjuntak, T. H., Mahmudy, W. F., dan Sutrisno., (2014). Implementasi Modified K-Nearest Neighbor dengan Otomatisasi Nilai K Pada Pengklasifikasian Penyakit Tanaman Kedelai. online: http://jptiik.ub.ac.id/index.php/jptiik/article/do wnload/15/21/
. Simatupang, F. J., Wuryandari, T., & Suparti., (2016). Klasifikasi Rumah Layak Huni di Kabupaten Brebes dengan Menggunakan Metode Learning Vector Quantization dan Naive Bayes. Gaussian.
. Suryanto., (2017). Data Mining Untuk Klasifikasi Data. Bandung : Informatika Bandung.
. Tineges, R., Triayudi, A., Sholohati, I. D., (2020). Analisis sentimen terhadap layanan indihome berdasarkan twitter dengan metode klasifikasi support vector machine (SVM)., Vol. 4, No. 3, Page. 650-658.
. Turban, E., (2005). Decision Suport Systems And Intelligent Systems Edisi Bahasa Indonesia Jilid 1, Andi, Yogyakarta.
. Y. Al-Amrani, M. Lazaar., and K. El Kadiri., (2018). “Sentiment Analysis Using Hybrid Method Of Support Vector Machine And Decision Tree,” J Theor. adn Appl. Inf. Technol., Vol. 96, No. 7, pp. 1886-1895.
DOI: https://doi.org/10.29103/jacka.v2i2.21340
Article Metrics


Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Zuboili Zuboili, Rozzi Kesuma Dinata, Irwanda Syahputra

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Advanced Computer Knowledge and Algorithms
JACKA indexed by
Department of Informatics
Faculty of Engineering
Universitas Malikussaleh
Website : UNIVERSITAS MALIKUSSALEH
Journal Email : jacka@unimal.ac.id
Location
Journal of Advanced Computer Knowledge and Algorithms is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.