Implement the Analytical Hierarchy Process (AHP) and K-Nearest Neighbor (KNN) Algorithms for Sales Classification

Asmaul Husna, Sujacka Retno, Himmatur Rijal

Abstract


The Analytical Hierarchy Process (AHP) and K-Nearest Neighbor (KNN) algorithms are two algorithms that have proven efficient in various classification and prediction applications. This research examines the application of these two algorithms in the context of selling goods in PIM supermarkets. In this research, AHP and KNN are used to classify goods sold based on various criteria such as price, number of stock items sold, total sales amount. The research results show that KNN outperforms AHP in predicting the best-selling, best-selling and least-selling items based on sales in 2022 at PIM supermarkets. Based on this research, it can be concluded that the KNN algorithm is suitable for predicting the classification of goods sales in PIM Supermarkets. This research classifies sales of goods using the Analytical Hierarchy Process (AHP) and K-Nearest Neighbor (KNN) methods. This research uses 3 criteria. By using the value K=1, the experimental results show that the highest KNN has an accuracy of 38%, while AHP has an accuracy of 32%. Differences in accuracy results can be influenced by parameter settings and characteristics of the dataset used. Therefore, further analysis of these factors is needed to understand the performance differences between the two methods.

Keywords


Analytical Hierarchy Process (AHP) Algorithm; K-Nearest Neighbor (KNN); Sales Classification; Supermarket

Full Text:

PDF (Indonesian)

References


Aksa, A. F., Lake, Y., Rado, B. G., Bani, M. P., & Lika, E. (2023). Analysis of the Macro Environment and Analysis of the Fives Forces in the Retail Industry in Indonesia. Inspirasi Ekonomi : Jurnal Ekonomi Manajemen, 5(4), 326–339. https://doi.org/10.32938/ie.v5i4.5115

Argina, A. M. (2020). Penerapan Metode Klasifikasi K-Nearest Neigbor pada Dataset Penderita Penyakit Diabetes. Indonesian Journal of Data and Science, 1(2), 29–33. https://doi.org/10.33096/ijodas.v1i2.11

Atthalla, I. N., Jovandy, A., & Habibie, H. (2018). Klasifikasi Penyakit Kanker Payudara Menggunakan Metode K Nearest Neighbor. Prosiding Annual Research Seminar, 4(1), 148–151.

Dinata, R. K. (2018). Aplikasi Tutorial Resep Masakan Tradisional Aceh Berbasis Android Menggunakan Metode Analytical Hierarchy Process (Ahp). JISKA (Jurnal Informatika Sunan Kalijaga), 3(1), 24. https://doi.org/10.14421/jiska.2018.31-03

Kurniawati, E., Soelistiyono, A., & Ariefiantoro, T. (2018). STRATEGI BERTAHAN DI TENGAH MARAKNYA TOKO MODERN (Studi Kasus pada Toko Tradisional Bu Yuli di Kelurahan Pendrikan Lor Kecamatan Semarang Tengah).

Nikmatun, Alvi, I., Waspada, & Indra. (2019). Implementasi Data Mining Untuk Klasifikasi Masa Studi Mahasiswa Menggunakan Algoritma K-Nearest Neighbor. Jurnal SIMETRIS, 10(2), 421–432.

Nur Ajny, A. (2020). Sistem Pendukung Keputusan Pemilihan Lipstik Dengan Analytical Hierracy Process. Jurnal Riset Sistem Informasi Dan Teknologi Informasi (JURSISTEKNI), 2(3), 1–13. https://doi.org/10.52005/jursistekni.v2i3.59

Nurhadi. (2018). Analisis Promosi Terhadap Tingkat Pelayanan Kasir Supermarket Ramayana Banjarmasin. Jurnal Moneter, V(1), 1–7.

Putri, I. P. (2021). Analisis Performa Metode K- Nearest Neighbor (KNN) dan Crossvalidation pada Data Penyakit Cardiovascular. Indonesian Journal of Data and Science, 2(1), 21–28. https://doi.org/10.33096/ijodas.v2i1.25

Saputra, J., Sa, Y., Yoga Pudya Ardhana, V., & Afriansyah, M. (2023). RESOLUSI : Rekayasa Teknik Informatika dan Informasi Klasifikasi Kematangan Buah Alpukat Mentega Menggunakan Metode K-Nearest Neighbor Berdasarkan Warna Kulit Buah. Media Online, 3(5), 347–354. https://djournals.com/resolusi

Sirojul, M. I., Bogor, A., Sukmana, S. H., Fauziah, S., Sahara, S., & Sikumbang, E. D. (2022). JITE ( Journal of Informatics and Telecommunication Engineering ) Implementation AHP Method in Selection of Outstanding Students at. 5(January), 332–341.

Suarnatha, I. P. D., Agus, I. M., & Gunawan, O. (2022). Jurnal Computer Science and Information Technology ( CoSciTech ) manusia. CoSciTech, 3(2), 73–80.

Sudradjat, A., Sodiqin, M., & Komarudin, I. (2020). Penerapan Metode Analytical Hierarchy Process Terhadap Pemilihan Merek CCTV. Jurnal Infortech, 2(1), 19–30. https://doi.org/10.31294/infortech.v2i1.7660

Yanti, Y., Safitri, D. A., & Alamsyah, R. A. (2020). Pemilihan Cemilan Khas Sampit Terlaris Pada Kedai 24 Dengan Metode AHP (Analytic Hierarchy Process). Walisongo Journal of Information Technology, 2(1), 41. https://doi.org/10.21580/wjit.2020.2.1.4676

Yasa, I. W. S., Werthi, K. T., & Satwika, I. P. (2021). Sistem Pendukung Keputusan Penentuan Dosen Terbaik Menggunakan Metode Analytical Hierarchy Process (AHP) Pada STMIK Primakara. Kumpulan Artikel Mahasiswa Pendidikan Teknik Informatika (KARMAPATI), 10(3), 289. https://doi.org/10.23887/karmapati.v10i3.36824

Zarnelly, Z. (2019). Klasifikasi Permasalahan Agenstok Menggunakan Algoritma Naive Bayes Classifier Pada Pt. Hpai-Pekanbaru. Jurnal Ilmiah Rekayasa Dan Manajemen Sistem Informasi, 5(2), 208. https://doi.org/10.24014/rmsi.v5i2.7611




DOI: https://doi.org/10.29103/jacka.v1i4.17819

Article Metrics

 Abstract Views : 57 times
 PDF (Indonesian) Downloaded : 8 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Asmaul Husna, Sujacka Retno, Himmatur Rijal

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Journal of Advanced Computer Knowledge and Algorithms


JACKA indexed by

EuroPub_logoGoogle_Scholar_logogaruda_logodimension_logocrossref_logobase_logoworldcat_logoscilit_logoleiden_logo


Berkas:Logo-Unimal-Aceh Utara.png - Wikipedia bahasa Indonesia,  ensiklopedia bebas
Department of Informatics
Faculty of Engineering
Universitas Malikussaleh
Website : UNIVERSITAS MALIKUSSALEH
Journal Email : jacka@unimal.ac.id


Location


Creative Commons License
Journal of Advanced Computer Knowledge and Algorithms is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.