Diet Recommendation Application for Diabetes Patients Using the Preference Selection Index Method

Winda Ramadhani Siregar, Zara Yunizar, Yesy Afrillia

Abstract


Diabetes mellitus is a chronic condition characterized by elevated blood glucose levels. Effective diet management is crucial for controlling this condition and preventing serious complications. This study aims to develop a meal recommendation application for diabetes patients using the Preference Selection Index (PSI) method. The data used include user identity, health conditions, food preferences, and the nutritional content of meal menus. The PSI implementation process involves several key steps: collecting user data, normalizing nutritional values based on the minimum and maximum values in the database, adjusting the criterion weights according to the user's health conditions and food preferences, and calculating the PSI for each meal menu. The study results show that this application can provide meal recommendations that match the nutritional needs and health conditions of users. From a total of 10 user data analyzed, 50% received "Red Bean Soup with Vegetables" as the best menu, 30% received "Grilled Chicken Breast with Vegetables," and 10% each received "Grilled Chicken with Green Beans" and "Quinoa Salad with Avocado." The conclusion of this study is that the PSI method is effective in helping diabetes patients select an optimal diet, which can assist in better managing their condition and improving their quality of life. Suggestions for future research include increasing the variability of nutritional data, integrating with wearable technology, and developing reminder and education features.

Keywords


Diabetes; Preference Selection Index; Meal Recommendation; Web Application; Diet Management

Full Text:

PDF (Indonesian)

References


Tominaga, H., Hamaguchi, M., Ando, S., & Fukui, M. (2022). Penderita Diabetes Mellitus Tipe 2 Cenderung Memilih Menu Makanan Rendah Karbohidrat dan Rendah Kalori di Rumah pada Penerapan Diet. Journal of Diabetes Research.

Science, P., Safitri, W. I., & Sarwandi, M. (2022). Penerapan Metode Preference Selection Index (PSI) Dalam Penerimaan Staff IT. Journal of Information Technology.

Wright, E. (2020). Mechanisms of Diabetes and Its Complications. Journal of Endocrinology and Metabolism.

Johan Sinulingga, M., & Ula, M. (n.d.). Implementasi Algoritma Svm (Support Vector Machines) Untuk Klasifikasi Penderita Penyakit Gerd.

Qamal, M., Hamdhana, D., & Martin, M. (2020). Sistem Pakar Untuk Mendiagnosa Penyakit Angina Pektoris (Angin Duduk) Dengan Metode Forward Chaining Berbasis Web. TECHSI - Jurnal Teknik Informatika, 12(1), 86. [5]

Safitri, W. I., & Mesran, S. (2022). Penerapan Metode Preference Selection Index (PSI) Dalam Penerimaan Staff IT. Bulletin of Informatics and Data Science, 1(1). https://ejurnal.pdsi.or.id/index.php/bids/index

Parr, E. B., Devlin, B. L., Lim, K. H. C., Moresi, L. N. Z., Geils, C., Brennan, L., & Hawley, J. A. (2020). Time-restricted eating as a nutrition strategy for individuals with type 2 diabetes: A feasibility study. Nutrients, 12(11), 1–22. https://doi.org/10.3390/nu12113228

Laubu, C., Schweitzer, C., Motreuil, S., Louâpre, P., & Dechaume-Moncharmont, F. X. (2017). Mate choice based on behavioural type: do convict cichlids prefer similar partners? Animal Behaviour, 126, 281–291. https://doi.org/10.1016/j.anbehav.2017.02.020

Galicia-garcia, U., Benito-vicente, A., Jebari, S., & Larrea-sebal, A. (2020). Pathophysiology of Type 2 Diabetes Mellitus. 1–34.

Iatcu, C. O., Gal, A. M., & Covasa, M. (2023). Dietary Patterns of Patients with Prediabetes and Type 2 Diabetes. Metabolites, 13(4).

Galicia-garcia, U., Benito-vicente, A., Jebari, S., & Larrea-sebal, A. (2020). Pathophysiology of Type 2 Diabetes Mellitus. 1–34.

Demir, S., Nawroth, P. P., Herzig, S., & Üstünel, B. E. (2021). Emerging Targets in Type 2 Diabetes and Diabetic Complications. 2100275, 1–23. https://doi.org/10.1002/advs.202100275

Darojat, T. A. (2020). Penerapan CBIS Untuk Mendukung Keputusan Manajemen dalam Menghitung Index Kinerja Karyawan PT Devrindo Wydia Karawang Menerapkan Preference Selection Index. Jurnal Media Informatika Budidarma, 4(1), 167. https://doi.org/10.30865/mib.v4i1.1933

Brady, V., Whisenant, M., Wang, X., Ly, V. K., Zhu, G., Aguilar, D., & Wu, H. (2022). Characterization of Symptoms and Symptom Clusters for Type 2 Diabetes Using a Large Nationwide Electronic Health Record Database. Diabetes Spectrum, 35(2), 159–170. https://doi.org/10.2337/DS21-0064

Bitla, A., Devi, Nh., & Kiranmayi, V. (2016). Molecular mechanisms underlying microvascular complications in diabetes mellitus. Journal of Clinical and Scientific Research, 5(2), 112. https://doi.org/10.15380/2277-5706.jcsr.16.01.003

Bilgin Sari, E. (2019). Measuring The Performances of the Machines Via Preference Selection Index (PSI) Method and Comparing Them with Values of Overall Equipment Efficiency (OEE). Dokuz Eylul Universitesi Iktisadi ve Idari Bilimler Dergisi, 34(4), 573–581. https://doi.org/10.24988/ije.2019344859




DOI: https://doi.org/10.29103/jacka.v2i2.17810

Article Metrics

 Abstract Views : 3 times
 PDF (Indonesian) Downloaded : 3 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Winda Ramadhani Siregar, Zara Yunizar, Yesy Afrillia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Journal of Advanced Computer Knowledge and Algorithms


JACKA indexed by

EuroPub_logoGoogle_Scholar_logogaruda_logodimension_logocrossref_logobase_logoworldcat_logoscilit_logoleiden_logo


Berkas:Logo-Unimal-Aceh Utara.png - Wikipedia bahasa Indonesia,  ensiklopedia bebas
Department of Informatics
Faculty of Engineering
Universitas Malikussaleh
Website : UNIVERSITAS MALIKUSSALEH
Journal Email : jacka@unimal.ac.id


Location


Creative Commons License
Journal of Advanced Computer Knowledge and Algorithms is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.