Implementation of K-NN Algorithm to classify the Scholarship Recipients of Aceh Carong at Universitas Malikussaleh

Riski Yanti, Sujacka Retno, Balqis Yafis

Abstract


In an effort to increase the efficiency of the scholarship selection process, this research aims to implement the K-Nearest Neighbors (K-NN) algorithm in the classification of scholarship recipients. The research method involves collecting data on scholarship receipts from several previous years based on predetermined criteria such as father's job, mother's job, parent's income, number of parents working, father's last education, and mother's last education. Next, the K-NN algorithm is applied to classify prospective scholarship recipients based on the similarity of their profiles to students who have received previous scholarships. The results of this research indicate that the implementation of the K-NN algorithm in the classification of scholarship admissions at Malikussaleh Aceh Carong University can increase selection accuracy. The experimental results of the accuracy values obtained show that using the K-Nearest Neighbors algorithm with the Euclidean Distance approach and a value of K = 3 produces an algorithm accuracy level of 87.55%. Thus, the K-NN algorithm can be a useful method for scholarship selectors to support more precise and objective decision making.


Keywords


K-Nearest Neighbors (KNN); Data Mining; classification; scholarship recipients; Aceh Carong

Full Text:

PDF (Indonesian)

References


Arifin, Z. (2019). Penerapan Metode Knn (K-Nearest Neighbor) Dalam Sistem Pendukung Keputusan Penerimaan Kip (Kartu Indonesia Pintar) Di Desa Pandean Berbasis Web Dan Mysql. NJCA (Nusantara Journal of Computers and Its Applications), 4(1). https://doi.org/10.36564/njca.v4i1.101

Cholil, S. R., Handayani, T., Prathivi, R., & Ardianita, T. (2021). IJCIT (Indonesian Journal on Computer and Information Technology) Implementasi Algoritma Klasifikasi K-Nearest Neighbor (KNN) Untuk Klasifikasi Seleksi Penerima Beasiswa. IJCIT (Indonesian Journal on Computer and Information Technology), 6(2), 118–127.

Jogiyanto. (2018). Desain Algorithma Operasi Perkalian Matriks Menggunakan Metode Flowchart. Jurnal Teknik Komputer Amik Bsi, 1(1), 144–151.

Khasanah, F. N., & Rofiah, S. (2019). Metode Simple Additive Weighting Dalam Menentukan Rekomendasi Penerima Beasiswa. 6(1), 65–74.

Purwanto, A., & Nugroho, H. W. (2023). Analisa Perbandingan Kinerja Algoritma C4.5 Dan Algoritma K-Nearest Neighbors Untuk Klasifikasi Penerima Beasiswa. Jurnal Teknoinfo, 17(1), 236. https://doi.org/10.33365/jti.v17i1.2370

Putriani, J. D., & Hudaidah, H. (2021). Penerapan Pendidikan Indonesia Di Era Revolusi Industri 4.0. Edukatif : Jurnal Ilmu Pendidikan, 3(3), 830–838. https://edukatif.org/index.php/edukatif/article/view/407

Razi, A. (2022). Klasifikasi Penerima Beasiswa Aceh Carong (Aceh Pintar) Di Universitas Malikussaleh Menggunakan Algoritma Knn (K-Nearest Neighbors). Jurnal Tika, 7(1), 79–84. https://doi.org/10.51179/tika.v7i1.1116

Retno, S., & Hasdyna, N. (2022). Profile Matching in Government Scholarship Acceptance System for Student in Aceh Utara. Journal of Informatics and Telecommunication Engineering, 5(2), 268–275. https://doi.org/10.31289/jite.v5i2.6031

Sulistyo, D., & Winiarti, S. (2015). Penentuan Beasiswa Siswa Kurang Mampu. Jurnal Informatika, 9(1), 965–974.

Sumiah, A., & Mirantika, N. (2020). Perbandingan Metode K-Nearest Neighbor dan Naive Bayes untuk Rekomendasi Penentuan Mahasiswa Penerima Beasiswa pada Universitas Kuningan. Buffer Informatika, 6(1), 1–10.

Widaningsih, S., Yusuf, S., Informatika, J. T., Teknik, F., & Suryakancana, U. (2022). Penerapan Data Mining Untuk Memprediksi Siswa Berprestasi Dengan Menggunakan Algoritma K Nearest Neighbor. 9(3), 2598–2611.Yuli Mardi. (2019). Data Mining : Klasifikasi Menggunakan Algoritma C4 . 5 Data mining merupakan bagian dari tahapan proses Knowledge Discovery in Database ( KDD ). Jurnal Edik Informatika. Jurnal Edik Informatika, 2(2), 213–219




DOI: https://doi.org/10.29103/jacka.v1i1.14534

Article Metrics

 Abstract Views : 176 times
 PDF (Indonesian) Downloaded : 44 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Riski Yanti, Sujacka Retno, Balqis Yafis

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Journal of Advanced Computer Knowledge and Algorithms


JACKA indexed by

EuroPub_logoGoogle_Scholar_logogaruda_logodimension_logocrossref_logobase_logoworldcat_logoscilit_logoleiden_logo


Berkas:Logo-Unimal-Aceh Utara.png - Wikipedia bahasa Indonesia,  ensiklopedia bebas
Department of Informatics
Faculty of Engineering
Universitas Malikussaleh
Website : UNIVERSITAS MALIKUSSALEH
Journal Email : jacka@unimal.ac.id


Location


Creative Commons License
Journal of Advanced Computer Knowledge and Algorithms is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.