A Comprehensive Process Of Nitrogen Fixation In Plants
Abstract
Nitrogen is a component of several biomolecules that are essential for all organisms' growth and development. Nitrogen fixation is the biological process that converts molecular nitrogen to ammonia. Biological nitrogen fixation is mediated by diazotroph microorganisms that use nitrogenase enzymes to enhance atmospheric nitrogen. Much of this is accomplished through a symbiotic interaction between plants and diazotrophic bacteria. Microbiology and plant biology are discussed in symbiotic nitrogen fixation discussions. Some of the nitrogen fixation mechanisms mentioned in this paper begin with the formation of nodules, the action of the nitrogenase enzyme in reducing nitrogen to ammonia, and the presence of rhizobia in nodules. This study provides a comprehensive overview of the nodule formation process, the role of the nitrogenase enzyme in reducing nitrogen to ammonia, and the presence of rhizobia in nodules. A more complete literature review on biological nitrogen fixing in plants is required to obtain more specific information.
Keywords
Full Text:
PDFReferences
Ausmees, N., K. Jacobsson., M. Lindberg. 2003. A unipolarly located, cell-surface-associated agglutinin, RapA1, belongs to a family of Rhizobium-adhering proteins (Rap) in Rhizobium leguminosarum bv. trifolii. Microbiology 147. 549–559.
Benson, D. R., and M. L. Clawson. 2000. Evolution of the actinorhizal plant nitrogen-fixing symbiosis, p. 207–224. In E. Triplett (ed.), Prokaryotic nitrogen fixation: a model system for the analysis of a biological process. Horizon Scientific Press, Wymondham, England.
Benson, D. R., and W. B. Silvester. 1993. Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol. Rev. 57:293–319.
Diaz, C. L., L. S. Melchers, P. J. J. Hooykaas, B. J. J. Lugtenberg., J. W. Kijne. 1989. Root lectin as a determinant of host-plant specificity in the Rhizobium-legume symbiosis. Nature 338. 579–581.
Ehrhardt, D. W., E. M. Atkinson., S. R. Long. 1992. Depolarization of Alfalfa root hair membrane potential by Rhizobium meliloti Nod factors. Science. 256. 998–1000.
Egamberdieva, D., Z, Kucharova. 2008. Cropping effects on microbial population and nitrogenase activity in saline arid soil. Turk. J. Biol., 32: 85-90.
Esseling, J. J., F. G. Lhuissier., A. M. Emons. 2003. Nod factor-induced root hair curling: continuous polar growth towards the point of Nod factor application. Plant Physiol. 132, 1982–1988
Fahraeus, G., H. Ljunggren. 1959. The possible significance of pectic enzymes in root hair infection by nodule bacteria. Physiol. Plant 12, 145–154
Ferguson, S. J. 1998. Curr. Opin. Chem. Biol. 2, 182.
Flechard C.R., Ambus P., Skiba U., Rees R.M., Hensen A., van Amstel A., van den Pol-van Dasselaar A., Soussana J.-F., Jones M., CliftonBrown J., Raschi A., Horvath L., Neftel A., Jocher M., Ammann C., Leifeld J., Fuhrer J., Calanca P., Thalman E., Pilegaard K., Di Marco C., Campbell C., Nemitz E., Hargreaves K.J., Levy P.E., Ball B.C., Jones S.K., van de Bulk W.C.M., Groot T., Blom M., Domingues R., Kasper G., Allard V., Ceschia E., Cellier P., Laville P., Henault C., Bizouard F., Abdalla M., Williams M., Baronti S., Berretti F., Grosz B. 2007. Effects of climate and management intensity on nitrous oxide emissions in grassland systems across Europe, Agric. Ecosyst. Environ. 121, 135–152
Frank, I.B., P. Lundgren., P, Falkowski. 2003. Nitrogen fixation and photosynthetic oxygen
evolution in cyanobacteria. Research in Microbiol., 154: 157-164.
Gage, D.J. 2004. Infection and Invasion of Roots by Symbiotic, Nitrogen-Fixing Rhizobia during Nodulation of Temperate Legumes. Microbiology And Molecular Biology Reviews. 68 (2), 280-300
Hirsch, A. M. 1999. Role of lectins (and rhizobial exopolysaccharides) in legume nodulation. Curr. Opin. Plant Biol. 2. 320–326.
Kneip, Christoph., Lockhart, Peter., Voß, Christine., Maier, Uwe-G. 2007. Nitrogen fixation in eukaryotes – New models for symbiosis. BMC Evolutionary Biology. 7 (55), 1-12
Liu, Wu., John, Baddeley., Christine, Watson. 2011. Models of biological nitrogen fxation of legumes. A review. Agronomy for Sustainable Development. Springer. 31 (1), 155-172
Ma’ruf, A., Putra, E.T.S., Waluyo, S. 2016. Effect of Pyraclostrobin on Shoot Quality of Assamica Tea (Camellia sinensis var. assamica) Clones During The Dry Season. Agricultura. 97-98, 7-15.
Ma’ruf, A., Sidiq, M.F., Suriani, N.L., Bordoloi, P. 2022. Food Legume Production Performance in Support of World Food. Tropical Plantation Journal. 1(2), 35-54
Mateos, P. F., D. L. Baker, M. Petersen, E. Velazquez, J. I. Jimenez-Zurdo, E. Martinez-Molina, A. Squartini, G. Orgambide, D. H. Hubbell., F. B. Dazzo. 2001. Erosion of root epidermal cell walls by Rhizobium polysaccharide-degrading enzymes as related to primary host infection in the
Rhizobium-legume symbiosis. Can. J. Microbiol. 47, 475–487.
Miller, D. D., N. C. A. de Ruijter, T. Bisseling., A. M. C. Emons. 1999. The role of actin in root hair morphogenesis: studies with lipochito-oligosaccharide as a growth stimulator and cytochalasin as an actin perturbing drug. Plant J. 17, 141–154
Nasr Esfahani, M., Sulieman, S., Schulze, J., Yamaguchi-Shinozaki, K., Shinozaki, K., Tran, LS. 2014. Mechanisms of physiological adjustment of N2 fixation in Cicer arietinum L. (chickpea) during early stages of water deficit: single or multi-factor controls. Plant J. 79, 964–980.
Oldroyd, G. E. D., E. M. Engstrom., S. R. Long. 2001. Ethylene inhibits the Nod factor signal transduction pathway of Medicago truncatula. Plant Cell. 13, 1835–1849
Oldroyd, G.E., Downie, J.A. 2008. Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu. Rev. Plant Biol. 59, 519–546.
Oldroyd, G.E., Murray, J.D., Poole, P.S., Downie, J.A. 2011. The rules of engagement in the legume-rhizobial symbiosis. Annu. Rev. Genet. 45, 119–144.
Postgate J.R. 1982. Biological nitrogen fixation: fundamentals. Philos. Trans. R. Soc. B. 296, 387–375.
Rae, A. L., P. Bonfante-Fasolo., N. J. Brewin. 1992. Structure and growth of infection threads in the legume symbiosis with Rhizobium leguminosarum. Plant J. 2, 385–395
Rae, A. L., S. Perrotto, J. P. Knox, E. L. Kannenberg., N. J. Brewin. 1991. Expression of extracellular glycoproteins in the uninfected cells of developing pea nodule tissue. Mol. Plant-Microbe Interact. 4, 563–570
Rai, A.N., Söderbäck, E., Bergman, B. 2000. Cyanobacterium-plant symbioses. Tansley Review No. 116. New Phytol. 147:449-481
Rathbun, E. A., M. J. Naldrett., N. J. Brewin. 2002. Identification of a family of extensin-like glycoproteins in the lumen of Rhizobium-induced infection threads in pea root nodules. Mol. Plant-Microbe Interact. 15, 350– 359
Sieberer, B., A.M.C. Emons. 2000. Cytoarchitecture and pattern of cytoplasmic streaming in root hairs of Medicago truncatula during development and deformation by nodulation factors. Protoplasma 214, 118–127
Smil, V. 2004. Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production; MIT Press: Cambridge, MA, 2004.
Smit, G., C. C. de Koster, J. Schripsema, H. P. Spaink, A. A. van Brussel,and J. W. Kijne. 1995. Uridine, a cell division factor in pea roots. Plant Mol.Biol. 29. 869–873. 152.
Smit, G., J. W. Kijne., B. J. Lugtenberg. 1989. Roles of flagella, lipopolysaccharide, and a Ca2 dependent cell surface protein in attachment of Rhizobium leguminosarum biovar vicae to pea root hair tips. J. Bacteriol. 171. 569–572
Stout W.L., Fales S.L., Muller L.D., Schnabel R.R., Weaver S.R. 2000. Water quality implications of nitrate leaching from intensively grazed pasture swards in the northeast US, Agric. Ecosyst. Environ. 77, 203–210.
Terpolilli, J.J., Hood, G.A., Poole, P.S. 2012. What determines the efficiency of N2-fixing Rhizobium-legume symbioses? Adv. Microb. Physiol. 60, 325–389
Timmers, A. C., M. C. Auriac., G. Truchet. 1999. Refined analysis of early symbiotic steps of the Rhizobium-Medicago interaction in relationship with microtubular cytoskeleton rearrangements. Development. 126, 3617–3628
Trindade H., Coutinho J., Jarvis S., Moreira N. 2001. Nitrogen mineralization in sandy loam soils under an intensive double-cropping forage system with dairy-cattle slurry applications, Eur. J. Agron. 15, 281–293.
Udvardi, M., Poole, P.S. 2013. Transport and metabolism in legume-rhizobia symbioses. Annu. Rev. Plant Biol. 64, 781–805.
Van den Bosch, K. A., D. J. Bradley, J. P. Knox, S. Perotto, G. W. Butcher., N. J. Brewin. 1989. Common components of the infection thread matrix and intercellular space identified by immunocytochemical analysis of pea nodules and uninfected roots. EMBO J. 8, 335–342
Van Hameren, B., Hayashi, S., Gresshoff, P.M., Ferguson, B.J. 2013. Advances in the identification of novel factors required in soybean nodulation, a process critical to sustainable agriculture and food security. J. Plant Biol. Soil Health. 1, 6.
van Rhijn, P., N. A. Fujishige, P. O. Lim., A. M. Hirsch. 2001. Sugarbinding activity of pea lectin enhances heterologous infection of transgenic alfalfa plants by Rhizobium leguminosarum biovar viciae. Plant Physiol. 126. 133–144.Widmer, F., B. T. Shaffer, L. A. Porteous, and R. J. Seidler. 1999. Analysis of nifH gene pool complexity in soil and litter at a Douglas fir forest site in the Oregon Cascade mountain range. Appl. Environ. Microbiol. 65, 374–380.
Zehr, J. P., B. D. Jenkins, S. M. Short, and G. F. Steward. 2003. Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ. Microbiol. 5, 539–554.
Zorreguieta, A., C. Finnie., J. A. Downie. 2000. Extracellular glycanases of Rhizobium leguminosarum are activated on the cell surface by an exopolysaccharide-related component. J. Bacteriol. 182, 1304–1312.
DOI: https://doi.org/10.29103/agrium.v20i4.13994
Article Metrics
Abstract Views : 337 timesPDF Downloaded : 103 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Amar Ma’ruf, Syahminar Syahminar, Cik Zulia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Agrium
ISSN 1829-9288 (Print)
ISSN 2655-1837 (Online)
Published by Faculty of Agriculture, Universitas Malikussaleh
Website : http://ojs.unimal.ac.id/index.php/agrium
E-mail : agrium@unimal.ac.id
Jurnal Agrium is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
(c) Author 2018 all rights reserved