Acute toxicity of mercury to freshwater cultured milkfish Chanos chanos: Clinical symptoms and lethal concentration assessment

Riri Ezraneti, Munawar Khalil, Ridwan Affandi, Kukuh Nirmala

Abstract


The increasing use of mercury in the industrial sector poses significant risks to freshwater ecosystems and aquatic organisms. Milkfish (Chanos chanos), a widely consumed species, is now being reared in freshwater environments, raising concerns about mercury bioaccumulation and food safety. This study aimed to determine the median lethal mercury concentration for milkfish at 96 hours (LC50) in freshwater using an experimental approach and probit analysis. Five mercury concentrations were tested: 0 (control), 0 .110 mg Hg/L, 0.195 mg Hg/L, 0.347 mg Hg/L, and 0.618 mg Hg/L. The results indicated that mercury is highly toxic to milkfish, with a 96-hour LC50 of 0.147 mg Hg/L. Clinical symptoms observed included loss of reflex movements, irregular swimming, frequent surfacing with widened mouth and operculum openings, convulsions, and ventilation of the ram before mortality. These findings highlight the acute toxicity of mercury in freshwater milkfish and underscore the potential health risks associated with mercury contamination in aquaculture systems.


Keywords


Heavy metal, aquaculture, LC50, bioaccumulation

Full Text:

PDF

References


Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 2019, 1-14. https://doi.org/10.1155/2019/6730305.

Balshaw, S., Edwards, J., Daughtry, B., & Ross, K. (2007). Mercury in seafood: Mechanisms of accumulation and consequences for consumer health. Reviews on Environmental Health, 22(2), 91-113. https://doi.org/10.1515/reveh.2007.22.2.91.

Biuki, N. A., Savari, A., Mortazavi, M. S., & Zolgharnein, H. (2010). Acute toxicity of cadmium chloride (CdCl2. H2O) on Chanos chanos and their behavior responses. World journal of fish and marine sciences, 2(6), 481-486.

Boening, D. W. (2000). Ecological effects, transport, and fate of mercury: a general review. Chemosphere, 40(12), 1335-1351. https://doi.org/10.1016/s0045-6535(99)00283-0.

Connell, D. W., & Miller, G. J. (1984). Chemistry and ecotoxicology of pollution (Vol. 65). John Wiley & Sons.

Darmono. (1995). Logam dalam sistem biologi makhluk hidup. Penerbit Universitas Indonesia.

de Almeida Rodrigues, P., Ferrari, R. G., Dos Santos, L. N., & Conte Junior, C. A. (2019). Mercury in aquatic fauna contamination: A systematic review on its dynamics and potential health risks. Journal of Environmental Sciences (China), 84, 205-218. https://doi.org/10.1016/j.jes.2019.02.018.

Esdaile, L. J., & Chalker, J. M. (2018). The mercury problem in artisanal and small-scale gold mining. Chemistry, 24(27), 6905-6916. https://doi.org/10.1002/chem.201704840.

Garcia-Herrero, I., Margallo, M., Onandía, R., Aldaco, R., & Irabien, A. (2017). Connecting wastes to resources for clean technologies in the chlor-alkali industry: a life cycle approach. Clean Technologies and Environmental Policy, 20(2), 229-242. https://doi.org/10.1007/s10098-017-1397-y.

Gworek, B., Bemowska-Kalabun, O., Kijenska, M., & Wrzosek-Jakubowska, J. (2016). Mercury in marine and oceanic waters-a review. Water, Air, & Soil Pollution, 227(10), 371. https://doi.org/10.1007/s11270-016-3060-3.

Hylander, L. D., & Goodsite, M. E. (2006). Environmental costs of mercury pollution. Science of the Total Environment, 368(1), 352-370. https://doi.org/10.1016/j.scitotenv.2005.11.029.

Jinadasa, B., Jayasinghe, G., Pohl, P., & Fowler, S. W. (2021). Mitigating the impact of mercury contaminants in fish and other seafood-A review. Marine Pollution Bulletin, 171, 112710. https://doi.org/10.1016/j.marpolbul.2021.112710.

Keane, S., Bernaudat, L., Davis, K. J., Stylo, M., Mutemeri, N., Singo, P., Twala, P., Mutemeri, I., Nakafeero, A., & Etui, I. D. (2023). Mercury and artisanal and small-scale gold mining: Review of global use estimates and considerations for promoting mercury-free alternatives. Ambio, 52(5), 833-852. https://doi.org/10.1007/s13280-023-01843-2.

Kultz, D. (2015). Physiological mechanisms used by fish to cope with salinity stress. Journal of Experimental Biology, 218(Pt 12), 1907-1914. https://doi.org/10.1242/jeb.118695.

La Colla, N. S., Botte, S. E., & Marcovecchio, J. E. (2019). Mercury cycling and bioaccumulation in a changing coastal system: From water to aquatic organisms. Marine Pollution Bulletin, 140, 40-50. https://doi.org/10.1016/j.marpolbul.2018.12.051.

Lin, Y. T., Wu, S. Y., & Lee, T. H. (2023). Salinity effects on expression and localization of aquaporin 3 in gills of the euryhaline milkfish (Chanos chanos). Journal of Experimental Zoology – A (JEZ-A) Ecological and Integrative Physiology, 339(10), 951-960. https://doi.org/10.1002/jez.2744.

Mielke, H. W., & Gonzales, C. (2008). Mercury (Hg) and lead (Pb) in interior and exterior New Orleans house paint films. Chemosphere, 72(6), 882-885. https://doi.org/10.1016/j.chemosphere.2008.03.061.

Modassir, Y. (2000). Effect of salinity on the toxicity of mercury in mangrove clam, Polymesoda erosa (Lightfoot 1786). Asian Fisheries Science, 13(4). https://doi.org/10.33997/j.afs.2000.13.4.005.

Mwakalapa, E. B., Simukoko, C. K., Mmochi, A. J., Mdegela, R. H., Berg, V., Bjorge Muller, M. H., Lyche, J. L., & Polder, A. (2019). Heavy metals in farmed and wild milkfish (Chanos chanos) and wild mullet (Mugil cephalus) along the coasts of Tanzania and associated health risk for humans and fish. Chemosphere, 224, 176-186. https://doi.org/10.1016/j.chemosphere.2019.02.063.

Raj, D., & Maiti, S. K. (2019). Sources, toxicity, and remediation of mercury: an essence review. Environmental Monitoring and Assessment, 191(9), 566. https://doi.org/10.1007/s10661-019-7743-2.

Siahaan, D. H. (2003). Toksisitas logam berat Pb terhadap ikan bandeng Chanos chanos Forsskal pada berbagai tingkat salinitas Institut Pertanian Bogor]. Bogor.

Swanson, C. (1998). Interactive effects of salinity on metabolic rate, activity, growth and osmoregulation in the euryhaline milkfish (Chanos chanos). Journal of Experimental Biology, 201 (Pt 24), 3355-3366. https://doi.org/10.1242/jeb.201.24.3355.

UNEP. (2019). Global Mercury Assessment 2018. UN Environment Programme, Chemicals and Health Branch Geneva, Switzerland.

Wang, Q., Kim, D., Dionysiou, D. D., Sorial, G. A., & Timberlake, D. (2004). Sources and remediation for mercury contamination in aquatic systems-a literature review. Environmental Pollution, 131(2), 323-336. https://doi.org/10.1016/j.envpol.2004.01.010.

Wardoyo, S. T. H. (1977). Panduan uji biologis untuk evaluasi minyak dispersan [Biological test guide for evaluation of dispersant oils]. Puslitbangtek Migas Jakarta.

Wu, Y. S., Osman, A. I., Hosny, M., Elgarahy, A. M., Eltaweil, A. S., Rooney, D. W., Chen, Z., Rahim, N. S., Sekar, M., Gopinath, S. C. B., Mat Rani, N. N. I., Batumalaie, K., & Yap, P. S. (2024). The toxicity of mercury and its chemical compounds: Molecular mechanisms and environmental and human health implications: A comprehensive review. ACS Omega, 9(5), 5100-5126. https://doi.org/10.1021/acsomega.3c07047.

Zupo, V., Graber, G., Kamel, S., Plichta, V., Granitzer, S., Gundacker, C., & Wittmann, K. J. (2019). Mercury accumulation in freshwater and marine fish from the wild and from aquaculture ponds. Environmental Pollution, 255(Pt 1), 112975. https://doi.org/10.1016/j.envpol.2019.112975.




DOI: https://doi.org/10.29103/joms.v1i2.17880

Article Metrics

 Abstract Views : 179 times
 PDF Downloaded : 8 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Riri Ezraneti, Munawar Khalil, Ridwan Affandi, Kukuh Nirmala

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Journal of Marine Studies published by the Department of Marine Science, part of the Universitas Malikussaleh
Content on this site: Copyright © 2024 Journal of Marine Studies

Journal of Marine Studies is licensed under a Creative Commons Attribution 4.0 International License