Compositional analysis of invertebrate communities in Raja Ampat conservation zones using environmental DNA (eDNA)

Arina Ruzanna, Hawis Madduppa, Nurlisa Alias Butet

Abstract


Raja Ampat conservation area is divided into three zones: the core zone, the tourism zone, and the open zone. This region is crucial for sustainable fisheries and environmental management, yet it is under significant anthropogenic pressure. Accurate species detection is essential for inventory and diversity surveys, and environmental DNA (eDNA) methods have been shown to be more effective than conventional techniques. This study aimed to evaluate whether V9 primers could detect multispecies invertebrate compositions, assess community structure and contributions within each zone, and identify significant differences in invertebrate diversity among the zones. A total of 66 eDNA samples were collected from water and sediment columns across the three zones. Samples were extracted using the NucleoSpin™ kit (Macherey-Nagel) protocol, amplified with universal eukaryote primers targeting the 18S gene, and sequenced using Illumina MiSeq. Taxonomic analysis was performed using QIIME2 software and the SILVA database. The study identified 19 invertebrate species. The Shannon-Wiener (H') and Simpson (D) indices revealed greater species diversity in the core zone compared to the tourism and open zones. However, the Kruskal-Wallis test indicated no significant differences in species diversity across the zones. SIMPER analysis demonstrated a high percent contribution of species in each zone. This study highlights the effectiveness of eDNA methods for biodiversity assessment and offers valuable insights into invertebrate community structures within the Raja Ampat conservation area.


Keywords


Environmental DNA, 18S gene, invertebrates diversity, conservation

Full Text:

PDF

References


Bogich, T. L., Liebhold, A. M., & Shea, K. (2008). To sample or eradicate? A cost minimization model for monitoring and managing an invasive species. Journal of Applied Ecology, 45(4), 1134–1142. https://doi.org/10.1111/j.1365-2664.2008.01494.x

Bokulich, N. A., Kaehler, B. D., & Caporaso, J. G. (2018). Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME2's q2-feature-classifier plugin. Microbiome, 6(90). https://doi.org/10.1186/s40168-018-0470-z.

Boussarie, G., Bakker, J., Wangensteen, O. S., Mariani, S., Bonin, L., Juhel, J.-B., Kiszka, J. J., Kulbicki, M., Manel, S., Robins, W. D., & Vigliola, L. (2018). Environmental DNA illuminates the dark diversity of sharks. Science Advances, 4(5), eaap9661. https://doi.org/10.1126/sciadv.aap9661.

Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13, 581–583. https://doi.org/10.1038/nmeth.3869.

Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., & Wardle, D. A. (2012). Biodiversity loss and its impact on humanity. Nature, 486(7401), 59-67. https://doi.org/10.1038/nature11148.

Chen, H. (2016). VennDiagram: Generate high-resolution Venn and Euler plots. https://cran.r-project.org/package=VennDiagram.

Clarke, K., & Gorley, R. (2015). Getting started with PRIMER v7. PRIMER-E Ltd.

Deiner, K., Bik, H. M., & Mächler, E. (2017). Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Molecular Ecology, 26(21), 5872-5895. https://doi.org/10.1111/mec.14350.

Dinas Kebudayaan dan Pariwisata. (2013). Revisi Rencana Induk Pengembangan Pariwisata Daerah Kabupaten Raja Ampat. Harmony Techno Consulindo.

Hukom, F. D., Yulianda, F., Bengen, D., & Kamal, M. (2018). Reef fishes in the marine protected area of Dampier Strait, Raja Ampat islands, West Papua Province, Indonesia. International Journal of Fisheries and Aquatic Studies, 6(6), 131-135.

Hukom, F. D., Yulianda, F., Bengen, D. G., & Kamal, M. M. (2019). Efektivitas zonasi dalam pengelolaan perikanan karang di kawasan konservasi perairan Selat Dampier Raja Ampat. Jurnal Kebijakan Sosek Kelautan dan Perikanan, 9(2), 93-103. http://dx.doi.org/10.15578/jksekp.v9i2.7661.

Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., & Schloss, P. D. (2013). Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Applied and Environmental Microbiology, 79(17), 5112-5120. https://doi.org/10.1128/AEM.01043-13.

Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 550. https://doi.org/10.1186/s13059-014-0550-8.

Lukacs, P. M., & Burnham, K. P. (2005). Review of capture–recapture methods applicable to noninvasive genetic sampling. Molecular Ecology, 14(13), 3909-3919. https://doi.org/10.1111/j.1365-294X.2005.02717.x

McKenna, S. A., Allen, G. R., & Suryadi, S. (2002). A marine rapid assessment of Raja Ampat Islands, Papua Province, Indonesia. Conservation International.

Mondol, S., Ullas, K. K., Samba, K. N., Gopalaswamy, A. M., Andheria, A., & Ramakrishnan, U. (2009). Evaluation of non-invasive genetic sampling methods for estimating tiger population size. Biological Conservation, 142(10), 2350-2360. https://doi.org/10.1016/j.biocon.2009.05.014.

Muhtadi, A., Cordova, M. R., & Vitner. (2014). Ekologi perairan. IPB Press.

Nikijuluw, V. P. H., Adrianto, L., Bengen, D. G., Sondita, M. F. A., Monintja, D., Siry, H. Y., Nainggolan, P., Susanto, H. A., Megawanto, R., & Koropitan, A. F. (2013). Coral governance. IPB Press.

Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., et al. (2017). Vegan: Community ecology package. https://cran.r-project.org/web/packages/vegan/index.html.

Pietramellara, G., Ascher, J., Borgogni, F., Ceccherini, M. T., Guerri, G., & Nannipieri, P. (2009). Extracellular DNA in soil and sediment: Fate and ecological relevance. Biology and Fertility of Soils, 45(3), 219–235. https://doi.org/10.1007/s00374-008-0345-8.

Pochon, X., Zaiko, A., Fletcher, L. M., Laroche, O., & Wood, S. A. (2017). Wanted dead or alive? Using metabarcoding of environmental DNA and RNA to distinguish living assemblages for biosecurity applications. PLOS ONE, 12(11), e0187636. https://doi.org/10.1371/journal.pone.0187636.

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glockner, F. O. (2013). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41(D1), D590-D596. https://doi.org/10.1093/nar/gks1219.

Taberlet, P., Coissac, E., Hajibabaei, M., & Rieseberg, L. H. (2012). Environmental DNA. Molecular Ecology, 21(8), 1789-1793. https://doi.org/10.1111/j.1365-294X.2012.05542.x.

Thomsen, P. F., & Willerslev, E. (2015). Environmental DNA – An emerging tool in conservation for monitoring past and present biodiversity. Biological Conservation, 183, 4-18. https://doi.org/10.1016/j.biocon.2014.11.019.

Tomaso, H., Kattar, M., & Scholz, H. C. (2010). Comparison of commercial DNA preparation kits for the detection of Brucellae in tissue using quantitative real-time PCR. BMC Infectious Diseases, 10, 100. https://doi.org/10.1186/1471-2334-10-100.

Turner, C. R., Uy, K. L., & Everhart, R. C. (2014). Fish environmental DNA is more concentrated in aquatic sediments than surface water. Biological Conservation, 183, 93-102. https://doi.org/10.1016/j.biocon.2014.11.017

Wheeler, Q. D., Raven, P. H., & Wilson, E. O. (2004). Taxonomy: Impediment or expedient? Science, 303(5656), 285-285. https://doi.org/10.1126/science.303.5656.285.

Zhang, H., Yoshizawa, S., & Iwasaki, W. (2019). Seasonal fish assemblage structure using environmental DNA in the Yangtze Estuary and its adjacent waters. Frontiers in Marine Science, 6, 515. https://doi.org/10.3389/fmars.2019.




DOI: https://doi.org/10.29103/joms.v1i2.17632

Article Metrics

 Abstract Views : 171 times
 PDF Downloaded : 7 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Arina Ruzanna, Hawis Madduppa, Nurlisa Alias Butet

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Journal of Marine Studies published by the Department of Marine Science, part of the Universitas Malikussaleh
Content on this site: Copyright © 2024 Journal of Marine Studies

Journal of Marine Studies is licensed under a Creative Commons Attribution 4.0 International License