Hydrolysis of coffee pulp as raw material for bioethanol production: sulfuric acid variations
Abstract
Indonesia has enormous biomass resources due to its land territory is mostly surrounded by forests and agricultural area. One of the main agricultural commodities is Gayo Arabica coffee. Coffee agro-residue such as coffee-pulp contains glucose, organic matter, protein, nitrogen and high minerals. Therefore, coffee pulp can be a potential raw material for bioethanol production. In order to develop an effective technology for bioethanol production from coffee-pulp, it is necessary to investigate in early the way of glucose can be effectively prepared. In this preliminary investigation, glucose products ware prepared using two methods, i.e. method-I under several main-stages including extraction, delignification, and hydrolysis. While, under method-II, the sample was directly hydrolyzed at 100°C for 4 h. Under both methods, hydrolysis process to get glucose was performed by adding sulfuric acid (H2SO4) at various concentrations (8 wt.%, 10 wt.% and 12 wt.%). Based on analysis results, the highest glucose level, i.e. 17 % was obtained from method-II by adding 8 wt.% sulfuric acid. The less the amount of sulfuric acid added, the higher the glucose level produced. No difference in pH was found from both methods. The color of glucose produced under method-I is clearer compared to those prepared under method-II.
Keywords
Full Text:
PDFReferences
Ab Rasid, N. S., Shamjuddin, A., Abdul Rahman, A. Z., & Amin, N. A. S. (2021). Recent advances in green pre-treatment methods of lignocellulosic biomass for enhanced biofuel production. Journal of Cleaner Production, 321, 129038. https://doi.org/https://doi.org/10.1016/j.jclepro.2021.129038
Aiman, S. (2016). Pengaruh Ukuran Partikel Biomasa Lignoselulosa pada Pembuatan Bioetanol dan Biobutanol: Tinjauan. Jurnal Kimia Terapan Indonesia, 18(01), 11–25. https://doi.org/10.14203/jkti.v18i01.36
C. Sathesh-Prabu, A. G. M. (2011). Potential utilization of sorghum field waste for fuel ethanol production employing pachysolen tannophilus and saccharomyces cerevisiae, Bioresour. Technol, 102, 2788–2792.
Chen, Y.-C., & Jhou, S.-Y. (2020). Integrating spent coffee grounds and silver skin as biofuels using torrefaction. Renewable Energy, 148, 275–283. https://doi.org/https://doi.org/10.1016/j.renene.2019.12.005
Culaba, A. B., Philip Mayol, A., Lois G. San Juan, J., Vinoya, C. L., Concepcion II, R. S., Bandala, A. A., Rhay P. Vicerra, R., Ubando, A. T., Chen, W.-H., & Chang, J.-S. (2021). Smart Sustainable Biorefineries for Lignocellulosic Biomass. Bioresource Technology, 126215. https://doi.org/https://doi.org/10.1016/j.biortech.2021.126215
D. Scordia, S.L, Cosentino, J. W. Lee, T. W. J. (2012). Bioconver reed sion of giant reed (Arundo donax L.) hemicellulose hydrolysate to ethanol by schefferssomyces stipitis CBS6054. Biomass-Bioenergy, 39, 296–305.
Duarte, A., Uribe, J. C., Sarache, W., & Calderón, A. (2020). Jo ur l P re of. Energy, 119170. https://doi.org/10.1016/j.energy.2020.119170
G.W. Choi, H.J. Um, Y. Kim, et al. (2010). Isolation and characterization of two soil derived yeasts for bioethanol production on Cassava starch. Biomass Bioenergy, 34, 1223–1231.
G.W. Choi, H.J.Um, M, Kim, et al. (2010). Isolation and characteriization of ethanol producing Schizosaccharomyces pombe CHFY0201. Bioetechnol, 20, 828–834.
Hajar, S., Azhar, M., Abdulla, R., Jambo, S. A., Marbawi, H., Azlan, J., Azifa, A., Faik, M., & Francis, K. (2017). Yeasts in sustainable bioethanol production : A review. 10(March), 52–61. https://doi.org/10.1016/j.bbrep.2017.03.003
Halder, P., Kundu, S., Patel, S., Setiawan, A., Atkin, R., Parthasarthy, R., Paz-Ferreiro, J., Surapaneni, A., & Shah, K. (2019). Progress on the pre-treatment of lignocellulosic biomass employing ionic liquids. Renewable and Sustainable Energy Reviews, 105(September 2018), 268–292. https://doi.org/10.1016/j.rser.2019.01.052
Harsono, S. S., Salahuddin, Fauzi, M., Purwono, G. S., Soemarno, D., & Kissinger. (2015). Second Generation Bioethanol from Arabica Coffee Waste Processing at Smallholder Plantation in Ijen Plateau Region of East Java. Procedia Chemistry, 14, 408–413. https://doi.org/https://doi.org/10.1016/j.proche.2015.03.055
Hoang, A. T., Nizetic, S., Ong, H. C., Chong, C. T., Atabani, A. E., & Pham, V. V. (2021). Acid-based lignocellulosic biomass biorefinery for bioenergy production: Advantages, application constraints, and perspectives. Journal of Environmental Management, 296, 113194. https://doi.org/https://doi.org/10.1016/j.jenvman.2021.113194
Hoseini, M., Cocco, S., Casucci, C., Cardelli, V., & Corti, G. (2021). Coffee by-products derived resources. A review. Biomass and Bioenergy, 148, 106009. https://doi.org/https://doi.org/10.1016/j.biombioe.2021.106009
J. Zhao, L, X. (2010). Bioconversion of corn stover hydroly sate to ethanol by a recombinant yeast strain,. Fuel Process Technol, 91, 1807–1811.
J.H. Kim, J. Ryu, I. Y. Huh, et al. (2014). Ethanol production from galactose by a newly isolated saccharomyces cerevisiae KL17. Bioprocess Biosyst. Eng, 37, 1871–1878.
Lestari, M. D., Kimia, J., Matematika, F., Alam, P., & Semarang, U. N. (2018). Ekstraksi Selulosa dari Limbah Pengolahan Agar Menggunakan Larutan NaOH sebagai Prekursor Bioetanol. Indonesian Journal of Chemical Science, 7(3), 236–241.
Mirnezami, S. A., Zahedi, A., & Shayan Nejad, A. (2020). Thermal optimization of a novel solar/hydro/biomass hybrid renewable system for production of low-cost, high-yield, and environmental-friendly biodiesel. Energy, 202, 117562. https://doi.org/https://doi.org/10.1016/j.energy.2020.117562
Nawaz, S., Ahmad, M., Asif, S., Klemeš, J. J., Mubashir, M., Munir, M., Zafar, M., Bokhari, A., Mukhtar, A., Saqib, S., Khoo, K. S., & Show, P. L. (2022). Phyllosilicate derived catalysts for efficient conversion of lignocellulosic derived biomass to biodiesel: A review. Bioresource Technology, 343, 126068. https://doi.org/https://doi.org/10.1016/j.biortech.2021.126068
S. Aiman. (2014). Perkembangan teknologi dan tantangan dalam riset bioetanol di Indonesia. J Kimia Terapan Indonesia, 16, 108–117.
Sarsaiya, S., Jain, A., Kumar Awasthi, S., Duan, Y., Kumar Awasthi, M., & Shi, J. (2019). Microbial dynamics for lignocellulosic waste bioconversion and its importance with modern circular economy, challenges and future perspectives. Bioresource Technology, 291, 121905. https://doi.org/https://doi.org/10.1016/j.biortech.2019.121905
Setiawan, A., Hayat, F., Faisal, & Nur, T. B. (2019). Combustion characteristics of densified bio-char produced from Gayo Arabica coffee-pulp: Effect of binder. IOP Conference Series: Earth and Environmental Science, 364(1). https://doi.org/10.1088/1755-1315/364/1/012007
Setiawan, A., Randa, A. G., Faisal, Nur, T. Bin, & Rusdianasari. (2020). Thermal decomposition of Gayo Arabica coffee-pulp in a segmented chamber. Journal of Physics: Conference Series, 1500(1). https://doi.org/10.1088/1742-6596/1500/1/012076
S.I. Mussato, E.M.S. Machado, L.M. Carneiro, J. A. T. (2012). Sugar metabolism and ethanol production by different yeast strains from coffee industry wastes hydrolysates. Appl. Energy, 92, 763–768.
Tu, W.-C., & Hallett, J. P. (2019). Recent advances in the pretreatment of lignocellulosic biomass. Current Opinion in Green and Sustainable Chemistry, 20, 11–17. https://doi.org/https://doi.org/10.1016/j.cogsc.2019.07.004
Wang, C., Shim, E., Chang, H.-K., Lee, N., Kim, H. R., & Park, J. (2020). Sustainable and high-power wearable glucose biofuel cell using long-term and high-speed flow in sportswear fabrics. Biosensors and Bioelectronics, 169, 112652. https://doi.org/https://doi.org/10.1016/j.bios.2020.112652
DOI: https://doi.org/10.29103/jreece.v2i1.6382
Article Metrics
Abstract Views : 362 timesPDF Downloaded : 147 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Mawaddah, Adi Setiawan️, Zulnazri, Almia Permata Putri, Naseer A. Khan, & Vishal Jain
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.