High Precision Precision Current Stabilizers with Induction Levitation Effect

Kerimzade G. S.

Abstract


The present article discusses the characteristic features of the characteristics of precision controlled high-precision current stabilizers using the effect of induction levitation. The stability and shape of the load current determines the reliability, accuracy, efficiency, service life of automation devices, test equipment and electroplating baths. Determining the output characteristics, establishing analytical relationships between the initial data and the output parameters of the stabilizer is one of the stages of the algorithm for solving the problems of designing the parameters of an AC stabilizer with induction levitation of the moving part. This, in turn, contributes to the development of a mathematical model consisting of a system of equations of electric, magnetic, mechanical and thermal stabilizer circuits, the joint solution of which allows you to establish analytical relationships between the initial data and parameters such as working stroke, weight, winding and core sections, copper losses

Keywords


precision; high-precision; current stabilizer; effect; induction levitation; controlled; source; dependence; levitation winding; characteristic; load;

Full Text:

PDF

References


Abdullayev, Y., Kerimzade, G. S., & Mamedova, G. V. (2009). Converter predesign efforts. The 5th International Conference on Technical and Physical Problems of Power Engineering (ICTPE-2009), 61–64.

Abdullayev, Y. R., Kerimzade, G. S., Mamedova, G. V, & Piriyeva, N. M. (2015). Design of electric devices with induction levitation elements. Russian Electrical Engineering, 86, 252–257.

Boldea, I. (2015). Synchronous generators. CRC press.

Esbensen, K. H., Guyot, D., Westad, F., & Houmoller, L. P. (2002). Multivariate data analysis: in practice: an introduction to multivariate data analysis and experimental design. Multivariate Data Analysis.

G.S., K. (2022). Analysis of the methodology for calculation current stabilizer with induction levitation”. İJ TPE Journal, № 4.pp.170.

G.S, K. (2022a). Analytical connections of the parameters and sizes of the presizion stabilizer of alternating current using the effect of inducial levitation. İJ TPE Journal, № 3..pp.17.

G.S, K. (2022b). Characteristics of the current stabilizer control system. International Scientific and Technical Conference, pp.43-48.

G.S, K. (2022c). Features of the current stabilizer control system. 6th İnternational Artificial İntelligence  Data Processing Sympozium, pp.194-199.

Gieras, J. F. (2008). Advancements in electric machines. Springer Science & Business Media.

Gieras, J. F., Mews, J., & Splawski, P. (2011). Analytical calculation of electrodynamic levitation forces in a special-purpose linear induction motor. IEEE Transactions on Industry Applications, 48(1), 106–116.

Hasibuan, A., & others. (2011a). Applying genetic algorithm on power system stabilizer for stabilization of power system. Proceedings of The Annual International Conference, Syiah Kuala University-Life Sciences & Engineering Chapter, 1(2).

Hasibuan, A., & others. (2011b). Early detection of rotor-bar faults of three-phase induction motor using motor current signature analysis method. Proceedings of The Annual International Conference, Syiah Kuala University-Life Sciences & Engineering Chapter, 1(2).

Kerimzade G.S., M. M. . (2020). Development of a current stabilizer control system. In Scientific and technical journal “Problems of Energy .”

Kurniawan, R., Daud, M., & Hasibuan, A. (2023). Study of Power Flow and Harmonics when Integrating Photovoltaic into Microgrid. MOTIVECTION: Journal of Mechanical, Electrical and Industrial Engineering, 5(1), 33–46.

Kurniawan, R., Daud, M., & Hasibuan, A. (2022). Impact of Intermittent Renewable Energy Generations Penetration on Harmonics in Microgrid Distribution Networks. 2022 6th International Conference on Electrical, Telecommunication and Computer Engineering (ELTICOM), 30–37.

Manishe, M. I., Hasibuan, A., & Putri, R. (2021). Perancangan Radial Flux Permanent Magnet Synchronous Generator Sebagai Pembangkit Listrik Tenaga Angin Menggunakan Finite Element Method (FEM). Vol, 10, 42–48.

Nisworo, S., Hasibuan, A., & Daud, M. (2022). Evaluasi Kondisi Belitan Generator Transformers (GT) Dengan Sweep Frequency Response Analysis. RELE (Rekayasa Elektrikal Dan Energi): Jurnal Teknik Elektro, 5(1), 51–56.

Simo Fotso, A., Kenné, G., & Douanla, R. M. (2019). A simple flexible and robust control strategy for wind energy conversion systems connected to a utility grid. Journal of Control Science and Engineering, 2019.

Spooner, E., & Williamson, A. C. (1996). Direct coupled, permanent magnet generators for wind turbine applications. IEE Proceedings-Electric Power Applications, 143(1), 1–8.

Syafrudin, S., & Hasibuan, A. (n.d.). Early Detection of Rotor-bar Faults of Three-phase Induction Motor Using Motor Current Signature Analysis Method. 1st Syiah Kuala University Annual International Conference 2011.

Xue, X., Zhang, Z., Wu, B., He, S., Wang, Q., Zhang, W., Bi, R., Cui, J., Zheng, Y., & Xue, C. (2021). Coil-levitated hybrid generator for mechanical energy harvesting and wireless temperature and vibration monitoring. Science China Technological Sciences, 64(6), 1325–1334.




DOI: https://doi.org/10.29103/jreece.v3i1.10381

Article Metrics

 Abstract Views : 140 times
 PDF Downloaded : 37 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Kerimzade G.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.