KOMBINASI ALGORITMA JARINGAN SYARAF TIRUAN LEARNING VECTOR QUANTIZATION (LVQ) DAN SELF ORGANIZING KOHONEN PADA KECEPATAN PENGENALAN POLA TANDA TANGAN

Emnita Boru Ginting, Muhammad Zarlis, Zakarias Situmorang

Abstract


Signature is a special form of handwriting that contain special characters and additional forms are often used as proof of a person's identity verification. Partially legible signature, but many signatures that can not be read. However, a signature can be handled as an image so that it can be recognized using pattern recognition applications in image processing. Because the signature is the primary mechanism for authentication and authorization in legal transactions,the need for research on the development of recognition applications and automatic signature verification and efficiently increases from year to year. The method is widely used in signature recognition is a method of artificial neural network. On artificial neural networks are learning and recognition. One neural network algorithm is Learning Vector Quantization ( LVQ ) and Self Organizing Kohonen. Processes that occur in the neural network method requires a relatively long time. It is influenced by the number of data samples are used as a means of weight training update. The more and the large size of the pattern being trained, the longer the time it takes the network. LVQ is a method of training the unsupervised competitive layer will automatically learn to classify input vectors into certain classes. The classes are generated depends on the distance between the input vectors. If there are 2 input vectors are nearly as competitive layer will then classify both the input vectors into the same class. Kohonen Self Organizing Network is one of the neural network model which uses learning methods or unguided unsupervised neural network model that resembles humans. To speed up the computing process in the training and recognition is then developed an algorithm and a combination of LVQ and Self Organizing Kohonen by modifying the weight given to obtain a shorter time in the process of training and recognition.

Full Text:

PDF

References


Puspitaningrum, Diyah. 2006. Pengantar Jaringan Syaraf Tiruan. Yogyakarta : Penerbit: Andi.

Siang, Jong Jek. 2005. Jaringan Syaraf Tiruan Pemrograman Menggunakan Matlab. Yogyakarta : Penerbit Andi.

Kusumadewi, Sri. 2004. Membangun Jaringan Syaraf Tiruan Menggunakan Matlab. Yogyakarta : Penerbit Graha Ilmu.

Puspitorini, Sukma. 2008. Penyelesaian Masalah Traveling Salesman Problem Dengan Jaringan Saraf Self Organizing. Jurnal Media Informatika, Vol. 6,No. 1, Juni 2008, 39-55

Andrijasa ,M.F., Mistianingsih. 2010. Penerapan Jaringan Syaraf Tiruan Untuk Memprediksi Jumlah Pengangguran di Provinsi Kalimantan Timur Dengan Menggunakan Algoritma Pembelajaran Backpropagation. Jurnal Informatika Mulawarman Vol 5 No. 1 Februari 2010 50

Sahid, Drs,MSc.. 2006. Panduan Praktis Matlab. Penerbit ANDI Yogyakarta.

Silvia, Evanila. 2007. Disain Jaringan Syaraf Tiruan Untuk Prediksi Kualitas Gula Kristal Putih. Tesis Sekolah Pascasarjana Institut Pertanian Bogor.

Tae, Gadis Fransiska Yulianti et al. 2010. Penerapan Kohonen Self Organized Map Dalam Kuantisasi Vektor Pada Kompresi Citra Bitmap 24 Bit.

Jurnal Informatika, Volume 6 Nomor 2, November 2010. Fakultas

Teknologi Informasi, Program Studi Teknik Informatika Universitas

Kristen Duta Wacana Yogyakarta.

Qur’ani, D.Y., Rosmalinda, S. Jaringan Syaraf Tiruan Learning Vector Quantization Untuk Aplikasi Pengenalan Tanda Tangan. Seminar Nasional Aplikasi Teknologi Informasi 2010 (SNATI

.Yogyakarta, 19 Juni 2010.

Anike, M., Suyoto & Ernawati. 2012. Pengembangan Sistem Jaringan Syaraf Tiruan Dalam Memprediksi Jumlah Dokter Keluarga Menggunakan Backpropagation (Studi Kasus: Regional X Cabang Palu). Seminar Nasional Teknologi Informasi dan Komunikasi 2012 (SENTIKA 2012). Yogyakarta, 10 Maret 2012.

Prabowo, A., Sarwoko, E.A. & Riyanto, D.E. 2006. Perbandingan Antara Metode Kohonen Neural Network dengan Metode Learning Vector Quantization Pada Pengenalan Pola Tandatangan. Jurnal Sains & Matematika Vol.4, No. 4, Okt 2006.




DOI: https://doi.org/10.29103/techsi.v6i1.165

Article Metrics

 Abstract Views : 1018 times
 PDF Downloaded : 122 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2014 Emnita Boru Ginting, Muhammad Zarlis, Zakarias Situmorang

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


Indexed by:

          

Google Scholar
   
 

 


© Copyright of Journal TECHSI, (e-ISSN:2614-6029, p-ISSN:2302-4836).

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.