PENGGUNAAN METODE SUPPORT VECTOR MACHINE UNTUK MENGKLASIFIKASI DAN MEMPREDIKSI ANGKUTAN UDARA JENIS PENERBANGAN DOMESTIK DAN PENERBANGAN INTERNASIONAL DI BANDA ACEH
Abstract
Penelitian ini menyajikan analisis performansi Support Vector Machine
(SVM) dengan 11 variabel bebas dan 1 variabel terikat. Metode SVM
dengan data training (75%) dan data testing (25%) yang digunakan pada
pengklasifikasian data Penerbangan domestic dan data penerbangan
internasional untuk menemukan hyperplane terbaik yang memisahkan
dua buah kelas. Hasilnya terdapat 4 support vector memberikan informasi
yang dibutuhkan untuk menyakinkan bahwa metode SVM bias sebagai
classifier dan dapat memprediksi keakuratan model dengan menggunakan
kurva Receiver Operating Characteristic (ROC) untuk melihat akurasi model
terbaik. mencapai 84,31%.
Kata Kunci: Klasifikasi, Metode Support Vector Machine (SVM),
Receiver Operating Characteristic (ROC)
Full Text:
PDFReferences
Beeza-Yates, Ricada & Berthier Ribeiro-Neto. 1999., Modern
Information Retrieval. Addison Wesley.
Brefeld, Ulf., 2005, AUC Maximizing Support Vector Learning,
Chin, 1998, Using a Radial Basis Function as Kernel, http://svrwww.eng.cam.ac.uk/-kkc21/thesi
main/node31.html.K.K
Christianini, N. And Shawe Taylor, J., 2000, An Introduction to
Support Vector Machine and other Kernel Based Learning methods,
Cambridge University Press.
Cover Knowledge Bese_2006. Understanding Stemiry,
http.//www.Cover. com/and support/articles/informationCES4-060330-3-Understanding, Steming.
Dimitriadou, Evgenia, Hornik, Kurt, Leisch, Friedrich, Meyer,
David, and Andreas, Weingessel, 2007, E1071 : Misc Functions
of the Department of Statistics (e1071), TU Wien. R package
version 1.5-17.
Feldman, Susan. 2004, Why Categorize http://www.kmworld.com/Articles/Editorial/Feature/whycategorize
f-9580.aspx
Goller, C et. Al. 2000. Automatic Document Classification : A Thorough
Evaluation of Various Methods.
Han, J. and Kamber, M. 2006. Data Mining Concepts and Techniques,
Second Edition. Morgan Kauffman. San Francisco.
Joachims, Thorstem,. 1999. Transductive Inference for Text ClassiCation
Using Support Vector Machines. Procecdings of the
International and Comference.on Machine learning (ICMC)
Karatzoglou, Alexandros., 2006, Support Vector Machines in R,
http://www.jstatsoft.org/ MedCalc Software bvba.__.ROC Curve Analysis: Introduction.
MedCalc Software, Broekstraat 52, 9030 Mariakerke. Belgium.
http://www.medcalc.be/manual/roc.php.
Nugroho, Anto Satrio., 2003, Support Vector Machine Teori dan
Aplikasinya dalam Bioinformatika.
Pramudiono, I. 2007, Pengantar Data Mining : Menambang Permata
Support Vector Machine Untuk Mengklasifikasi Dan Memprediksi
Angkutan Udara Pengetahuan di Gunung Data.
http://www.ilmucomputer.org/wpcontent/uploads/2006/08
/IKOdatamining.zip.
Rainardi, Vincent. 2008. Building a Data Warehouse with Examples in
SQL Server. Springer. New York.
R.Goldstein, Darlene. 2003. ROC Curves, Swiss Institute of
Bioinformatics, Switzerland
Santosa, Budi. 2007. Data Mining Teknik Pemanfaatan Data untuk
Keperluan Bisnis. Graha Ilmu. Yogyakarta.
Sebastiani, Fabrizio.2002. Machine Learning in Automated Text
Categorization. ACM Computing Surveys, 34 (1) : 1-47
http://nmis.isti.cnr.it/sebastiani/publications/ACMCS02.pdf.
Sembiring, Krisantus. 2007. Tutorial SVM Bahasa Indonesia. Skripsi,
S1 Teknik Informatika, Teknik Elektro dan Informatika, ITB.
Bandung
Sun, Aixin, 2002. Web Classification Using Support Vector Machine.
Proceedings of the 4th
Int. Workshop on Web Information and
Data Management (WIDM 2002) held in conj. With CIKM 2002,
Virginia. USA.
Tuszynski, Jarek. 2007. caTools : Tools : moving window statistics, GIF,
Base64, ROCAUC, etc.. R package version 1.8.
Vapnik, V, 1995. The Nature of Statistical Learning Theory, SpringerVerlag.
Witten, I. H and Frank, E. 2005. Data Mining : Practical Machine
Learning Tools and Techniques. Second Edition. Morgan
Kauffman. San Francisco
DOI: https://doi.org/10.29103/sisfo.v2i2.1008
Article Metrics
Abstract Views : 1917 timesPDF Downloaded : 686 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 Sayed Fachrurrazi, Burhanuddin Burhanuddin
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Universitas Malikussaleh |
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.