PENGARUH PENAMBAHAN POLIPROPILENA PADA KARAKTERISTIK PLASTIK DEGRADABLE BERBASIS PATI AMPAS KOPI
Abstract
Penelitian untuk menemukan pengganti plastik komersial telah menarik perhatian karena dampak lingkungan sampah plastik yang tidak dapat terurai selama ribuan tahun. Plastik degradable dapat digunakan sebagai alternatif pengganti plastik sintetis. Tujuan dari penelitian ini adalah untuk mengetahui pengaruh polipropilena (PP) dengan penambahan maleat anhidrida terhadap karakteristik plastik degradable berbasis pati ampas kopi. Karakterisasi yang dialakukan adalah sifat mekanik, kimia, termal, ketahanan air dan laju degradasi. Pembuatan plastik degradable dilakukan beberapa tahap: ekstraksi pati dari ampas kopi, pembuatan plastik degradable dengan Polipropilena-graft-Maleat Anhidrida (PP-g-MA) dan karakteristisasi. Variasi polipropilena yang digunakan adalah 5, 10, 15 gr dengan penambahan maleat anhidrida 1 gr. Kekuatan tarik, modulus young dan elongasi tertinggi yang diperoleh adalah 9.80 MPa, 103.16 MPa dan 8.85% pada penambahan 5 gr PP. Berdasarkan hasil uji Fourier Transform Infra Red (FTIR), terdapat gugus O-H, C-H dan C=C yang teramati pada bilangan gelombang 3560.29 cm-1, 2943.37 cm-1, 2879.72 cm-1, 2833.43 cm-1, dan 1100.20 – 1718.58 cm-1. Sebagian besar senyawa tersebut bersifat hidrofilik sehingga dapat terdegradasi oleh aktivitas mikroba di dalam tanah. Karakterisasi termal menggunakan uji Thermogravimetri (TGA) menunjukkan penurunan berat terjadi mulai dari suhu 458.97oC hingga 512.88oC. Nilai swelling terendah plastik degradable dengan penggunaan PP 15 gr yaitu 1.1460%. Persentase penyerapan air yang rendah dapat menghambat pertumbuhan jamur. Laju biodegradasi plastik degradable berbasis pati ampas kopi 3-5% dipengaruhi komposisi PP.
Keywords
Full Text:
PDFReferences
Alper Aksit., Teresa Menzel., Merve Aksit., Volker Altstädt. (2020). Properties of Styrene–Maleic Anhydride Copolymer Compatibilized Polyamide 66/Poly (Phenylene Ether) Blends: Effect of Maleic Anhydride Concentration and Copolymer Content. MDPI: materials 13, 1237. DOI: 10.3390/ma13051237.
ASTM Standards Pertaining to The Biodegradability and Compostability of Plastics Sponsored by Subcommittee D20.96 on Environmentally Degradable Plastics, ASTM, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959.
Aina Aqila Arman Alim., Azizah Baharum., Siti Salwa Mohammad Shirajuddin., Farah Hannan Anuar., Blending of Low-Density Polyethylene and Poly(Butylene Succinate) (LDPE/PBS) with Polyethylene–Graft–Maleic Anhydride (PE–g–MA) as a Compatibilizer on the Phase Morphology, Mechanical and Thermal Properties. MDPI: Polymers, 15, 261. https://doi.org/10.3390/ polym15020261.
A.Mengual., D. Juarez., R. Balart., S. Ferraandiz. (2017). PE-g-MA, PP-g-MA and SEBS-g-MA compatibilizer used in material blends, Elsevier: Procedia Manufacturing 13, 321–326.
Bambang Admadi Harsojuwono., Wayan Arnata., Amna Hartiati., Yohanes Setiyo., Sayi Hatiningsih., & Luh Suriati. (2022). The Improvement of the Modified Starch—Glucomannan—Polyvinyl Alcohol Biothermoplastic Composite Characteristics With Polycaprolactone and Anhydride Maleic Acid. Frontiers in Sustainable Food Systems, 6, 844485.
Ballesteros, L.F., Teixeira, J.A., Mussatto, S.I. (2014). Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food Bioprocess Tech, 7 (12), 3493–3503.
Denny Akbar Tanjung., Novesar Jamarun., Syukri Arief., Hermansyah Aziz., Ahmad Hafizullah Ritonga., Boy Isfa., Vivi Sisca. (2022). Influence of LLDPE-g-MA on mechanical properties, degradation performance, and water absorption of thermoplastic sago starch blends Indones J. Chem 22, (1), 171-178.
D. Wang, Y. Li, X.-M. Xie., & B.-H. Guo. (2011). Compatibilization and morphology development of immiscible ternary polymer blends. Polymer, 52, (1), 91–200.
Farah Hafidzah., Mohd Bijarimi., Waleed Alhadadi., Suriyati Salleh., Mohammad Norazmi., Erna Normaya. (2021). Statistical Study on the Interaction Factors of Polypropylene-Graft-Maleic Anhydride (PP-g-MA) with Graphene Nanoplatelet (GNP) at Various Poly(Lactic Acid)/Polypropylene (PLA/PP) Blends Ratio. Indones. J. Chem, 21 (1), 234 – 242. DOI: 10.22146/ijc.54036.
G. Jiang, H. Wu., & S. Guo. (2010). Reinforcement of adhesion and development of morphology at polymer-polymer interface via reactive compatibilization: a review. Polymer Engineering and Science, 50, (12), 2273–2286.
Harris, M., Potgieter, J, Ray, S., Archer, R., Arif, K.M. (2020). Polylactic acid and high-density polyethylene blend: Characterization and application in additive manufacturing. Journal of Applied Polymer Science, 137, 49602.
Hiba Shaghaleh, Xu Xu, Shifa Wang. (2018) Current progress in production of biopolymeric materials based on cellulose, cellulose nanofibers, and cellulose derivatives. The Royal Society of Chemistry: RSC Advances 8, 825–842 DOI: 10.1039/c7ra11157.
Iman Rahayu., Achmad Zainuddin., Yoga Trianzar Malik., Sunit Hendrana. 2020. Maleic anhydride grafted onto high density polyethylene with an enhanced grafting degree via monomer microencapsulation. Heliyon, 6, e0374. https://doi.org/10.1016/j.heliyon.2020.e03742.
Jung, W., Savithri, D., Sharma-Shivappa., R. (2020). Effect of Sodium Hydroxide Pretreatment on Lignin Monomeric Components of Miscanthus × giganteus and Enzymatic Hydrolysis. Waste Biomass Valor 11, 5891–5900. https://doi.org/10.1007/s12649-019-00859-8.
K. J. Falua, A. Fokharel, A. Babaei-Ghazvini, Y. Ai, and B. Acharya, valorization of starch to biobased materials: a review, Polymers, 14, 2215, (2022) https://doi.org/10.3390/polym14112215
Maryam., Anwar Kasim., Novelina., Emriadi. (2022). Improvement on The Bioplastic Properties of Polyvinyl Alcohol (PVA) with The Sago Starch Nanoparticle Addition. Sylwan 166, (1) 130.
Nur Nadia Nasir & Siti Amira Othman., (2021). The physical and mechanical properties of corn-based bioplastic films with different starch and glycerol content. Journal of Physical Science, 32, (3), 89–101. https://doi.org/10.21315/jps2021.32.3.7.
Nor Izaida Ibrahim., Farah Syazwani Shahar., Mohamed Thariq Hameed Sultan., Ain Umaira Md Shah., Syafiqah Nur Azrie Safri., Muhamad Hasfanizam Mat Yazik. (2021). Overview of Bioplastic Introduction and Its Applications in Product Packaging. Coatings 11, 1423 https://doi.org/10.3390/coatings11111423.
Nanda Raudhatil Jannah., Novesar Jamarun., Yulia Eka Putri. (2021). Production of Starch-Based Bioplastic from Durio zibethinus Murr Seed Using Glycerol as Plasticizer. Jurnal Riset Kimia, 12, (2).
N. Suaduang, S. Ross., G. M. Ross., S. Pratumshat, & S. Mahasaranon. (2019). Effect of spent coffee grounds filler on the physical and mechanical properties of poly(lactic acid) biocomposite films. Materials Today: Proceedings, 17, 2104–2110.
Nora Aranburu., & José Ignacio Eguiazábal. (2015). Improved Mechanical Properties of Compatibilized Polypropylene/Polyamide-12 Blends. Hindawi Publishing Corporation International Journal of Polymer Science, 742540, 8 pages. http://dx.doi.org/10.1155/2015/742540.
Parul Sahu., & MK Gupta. (2022). Water absorption behavior of cellulosic fibres polymer composites: A review on its effects and remedies. Sage Journal: Journal of Industrial Textiles 51, (5S), 480S–7512S. DOI: 10.1177/1528083720974424.
R. Campos-Vegaa, G. Loarca-Pina, H. A. Vergara-Castaneda, & B. Dave Oomah. (2015). Spent coffee grounds: a review on current research and future prospects,” Trends in Food Science & Technology, 45, ( 24e36), 1–13.
Sanjib Kumar Karmee. (2017). A spent coffee grounds based biorefinery for the production of biofuels, biopolymers, antioxidants and biocomposites. Elsevier: Waste Management, 0956-053. https://doi.org/10.1016/j.wasman.2017.10.042.
T.A. Nascimento., V. Calado., C.W.P. Carvalho. (2012). Development and characterization of flexible film based on starch and passion fruit mesocarp flour with nanoparticles. Elsevier: Food Research International, 49, 588–595.
Waryat., M, Romli A., Suryani Indah., Yuliasih Syah., Johan. (2013). Penggunaan compatibilizer untuk meningkatkan karakteristik morfologi, fisik dan mekanik plastik biodegradabel berbahan baku pati termoplastik polietilen. Indonesian Journal of Materials Science, 14, (3), 214 – 221.
Yunita., Nurlina., Intan Syahbanu, Sintesis Nanopartikel Zink Oksida (ZnO) dengan Penambahan Ekstrak Klorofil dari Daun Suji sebagai sumber Capping Agent. POSITRON 10, (2), 123‒130. https://10.26418/positron.v10i2.42136.
DOI: https://doi.org/10.29103/jtku.v12i2.13580
Article Metrics
Abstract Views : 292 timesPDF Downloaded : 26 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Rozanna Dewi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
E-ISSN:2580-5436 |
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. |