Surface Modification of Carbon Nanotubes (Cnnts) as Electrode of Hybrid Energy Storage Device (Supercapacitor)
Abstract
Keywords
Full Text:
PDFReferences
Atvare, E., Gravelsins, A., Kudurs, E., Rozakis, S., Blumberga, D. (2023). When the household becomes environmentally friendly—dynamic simulation of hybrid energy system’s feasibility. Journal Environments,10(9). 1-21.
Arumugam, B., Mayakrishnan, G., Manickavasagam, S.K.S., Kim, S.C., & Vanaraj, R. (2023). An overview of active electrode materials for the efficient high-performance supercapacitor application. Crystals, 13(7), 1-28.
Emriadi, E. (2020). Effect of KOH activator on the performance of activated carbon from oil palm kernel shell as supercapacitor electrode material. Journal of Aceh Physics Society, 9(1), 13-19.
Forouzandeh, P., Kumaravel, V., & Pillai, S.C. (2020). Electrode materials for supercapacitors: a review of recent advances. Catalysts, 10, 1-73.
Guo, L., Hu, P., & Wei, H. (2023). Development of supercapacitor hybrid electric vehicle. Journal of Energy Storage, 65.
Imelda, Khanza, M., & Wulandari, N. (2019). Pengaruh aktivasi karbon nanotube terhadap luas permukaan dan sifat elektroda. Jurnal Teknik Material, 17(2), 45-55.
Kim, J-H., Kim, S-K., Kim, B-J., & Lee, H-M. (2023) Effects of oxygen-containing functional groups on the electrochemical performance of activated carbon for EDLC. Nanomaterials, 13(2), 1-16.
Lee, H., Park, J., Kim, J., Kim, S., & Cho, Y. (2020). Surface modification of carbon nanotubes for enhancing electrochemical performance in supercapacitors. Electrochimica Acta, 324.
Lu, X., & Yang, H. (2020). Designing mesoporous carbon materials with high specific surface area for electrochemical applications. Journal of Materials Chemistry A, 8(9), 4291-4305.
Mathias, L. (2022). Teknik peningkatan luas permukaan CNT dengan aktivasi kimia. Jurnal Kimia Fisika, 30(1), 23-31.
Munawarah, M. (2010). Pengaruh aktivasi kimia terhadap adsorben karbon aktif. Universitas Mulawarman.
Nugraha, H. (2021). Karakterisasi gugus fungsi material menggunakan FTIR. Jurnal Material dan Teknologi Indonesia, 20(3), 200-208.
Prasetya, F.A., Anggarini, U., Zakaria, Y., & Putri, R.D.S. (2019). Synthesis and characterization of supercapacitor electrode from fiber of Borassus flabelifer L. by activation method. Trans Publications Ltd, Switzerland, 966, 444-450.
Putri, A. (2020). Penerapan metode FTIR dalam analisis struktur kimia. Jurnal Sains Nano dan Material, 15(1), 89-97.
Rahmah, A., Zainollah, A., Fitriani, N.A., Ramadhan, D.S., Cahayo, M., & Masruroh, M. (2017). EDLC type supercapacitor electrode based on banana peels activated carbon. Indonesian Journal of Applied Physics, 7(1), 46-51.
Rahmawati, N., Wijayanti, E., & Kurniawan, A. (2020). Aplikasi SEM dalam analisis morfologi material. Jurnal Teknologi Material Indonesia, 18(2), 134-140.
Reddy, A.E., & Kim, H.-J. (2018). Supercapacitor applications in electric home appliances and smartphones. International Conference on Information and Communication Technology Robotics (ICT-ROBOT), Busan: Korea, 1-3.
Reza, M., Ernawati, L., Pusfitasari, M.D., Sylvia, N., Noor, A.H., & Ali, L.G. (2022). Karakterisasi karbon aktif dari kulit pisang kepok sebagai superkapasitor. Jurnal Teknik Kimia, 16(2), 53-60.
Sa’diyah, K., Lusiani, C.E., & Chrisnandari, R.D. (2020). Pengaruh proses aktivasi kimia terhadap karakteristik adsorben dari kulit pisang kepok (Musa acuminata L.). Jurnal Chemurgy, 4(1).
Salmawati, S. (2016). FTIR analysis on carbon nanotube activation. Jurnal Sains Material Indonesia, 15(2), 89-98.
Shah, S.S., & Aziz, Md.A. (2024). Properties of electrode materials and electrolytes in supercapacitor technology. Journal of Chemistry and Environment, 1-45.
Sharma, P., & Kumar, V. (2020). Study of electrode and electrolyte material of supercapacitor. Materials Today: Proceedings, 3(33), 1573-1578.
Song, Z., Hofmann, H., Li, J., Hou, J., Han, X., & Ouyang, M. (2014). Energy management strategies comparison for electric vehicles with hybrid energy storage system. Applied Energy, 134, 321-331.
Testbook.com. (2024, November 02). Supercapacitor: Know Definition, Types, Working Principle, Properties, Advantages & Applications. Retrieved from https://testbook.com/physics/supercapacitor
Universal Eco.id. (2024, November 02). Bahaya limbah baterai bekas jika tidak terkelola dengan baik. Retrieved from https://www.universaleco.id/blog/detail/bahaya-limbah-baterai-bekas-jika-tidak-terkelola-dengan-baik/141
Wardani, W. (2017). Transformasi struktur kimia karbon melalui aktivasi. Indonesian Journal of Chemistry, 21(2), 150-160.
Wulandari, I., et al. (2016). Chemical activation of CNT using sulfuric acid. Indonesian Journal of Chemistry, 18(4), 305-315.
Yuan, Z., He, Y., Wang, R., Mao, Y., Bai, J., & Dou, Y. (2023). Modification of multiwalled carbon nanotubes and their mechanism of demanganization. Molecules, 28(4).
Zhang, Q., & Li, G. (2020). Experimental study on a semi-active battery-supercapacitor hybrid energy storage system for electric vehicle application. IEEE Transactions on Power Electronics, 35(1), 1014-1021.
Zhu, Y., Murali, S., Stoller, M. D., Ganesh, K. J., Cai, W., Ferreira, P. J., ... & Ruoff, R. S. (2019). Carbon-based supercapacitors produced by activation of graphene. Science, 332(6037), 1537-1541.
DOI: https://doi.org/10.29103/jreece.v5i1.20250
Article Metrics


Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Mutia Reza, Memik Dian Pusfitasari, Lusi Ernawati, Thalia Winda Sari, Ranti Kusuma Wardhani, Novi Sylvia, Inggit Kresna Maharsih

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
situs togel situs toto macau 4d situs toto