Clustering Level of Cigarettes Addiction Among Malikussaleh University Students Using K-Means Method
Abstract
Cigarettes are a form of tobacco product produced by rolling dried tobacco leaves into small cylindrical sticks. Cigarettes are usually used for smoking, namely smoking and inhaling the smoke produced when tobacco leaves are burned. Cigarettes generally contain ingredients such as tobacco leaves, which can contain nicotine, an addictive substance that causes dependence. Apart from that, cigarettes also contain various other dangerous chemicals such as tar, carbon monoxide and formaldehyde. The smoke produced when a cigarette is burned creates more than 4,000 chemicals, of which about 70 are known to cause cancer. This research aims to help students at the Faculty of Engineering, Malikussaleh University to help students find out the level of their addiction to cigarettes. This research also gave birth to a grouping system that uses the Python programming language and MySQL as the database. The K-Means Clustering algorithm used in this grouping system states that out of 200 students at the Faculty of Engineering, Malikussaleh University, 28 people are smokers who have a low level of addiction (C1), 77 people have a moderate level of addiction (C2), 55 people have a heavy level of addiction. (C3), 40 people had a very severe level of addiction (C4). This system can be used to determine the level of cigarette addiction among students at the Faculty of Engineering, Malikussaleh University in the future.
Keywords
Full Text:
PDFReferences
Dewi, F. P., Aryni, P. S., & Umaidah, Y. (2022). Implementasi Algoritma K-Means Clustering Seleksi Siswa Berprestasi Berdasarkan Keaktifan dalam Proses Pembelajaran. JISKA (Jurnal Informatika Sunan Kalijaga), 7(2), 111–121.
Kurniawan, R., Suhada, S., & Dewi, R. (2021). Penerapan Algoritma K-Means Clustering Dalam Persentase Merokok Pada Penduduk Umur Di Atas 15 Tahun Menurut Provinsi. Jurnal Sistem Komputer Dan Informatika (JSON), 2(2), 178–186.
Nasution, D. A., Khotimah, H. H., & Chamidah, N. (2019). Perbandingan normalisasi data untuk klasifikasi wine menggunakan algoritma K-NN. Comput. Eng. Sci. Syst. J, 4(1), 78.
Nugraha, D. D. C., Naimah, Z., Fahmi, M., & Setiani, N. (2014). Klasterisasi Judul Buku dengan Menggun a kan Metode K-Means. Seminar Nasional Aplikasi Teknologi Informasi (SNATI).
Rizal, A. A., Kharisma, L. P. I., & Fahrurrozi, F. (2021). Peningkatan Efektifitas Programming dengan Pelatihan Python for Data Science Bagi Komunitas Programming Pondok Pesantren Nahdlatul Wathan Anjani. Jurnal Widya Laksmi: Jurnal Pengabdian Kepada Masyarakat, 1(1), 13–19.
Seimahuira, S. (2021). Implementasi datamining dalam menentukan destinasi unggulan berdasarkan online reviews tripadvisor menggunakan algoritma K-Means. Technologia: Jurnal Ilmiah, 12(1), 53–58.
Utomo, D. P., & Purba, B. (2019). Penerapan datamining pada data gempa bumi terhadap potensi tsunami di Indonesia. Prosiding Seminar Nasional Riset Information Science (SENARIS), 1, 846–853.
Wahyudi, A. K., Azizah, N., & Saputro, H. (2022). Data Mining Klasifikasi Kepribadian Siswa SMP Negeri 5 Jepara Menggunakan Metode Decision Tree Algoritma C4. 5. Journal of Information System and Computer, 2(2), 8–13.
DOI: https://doi.org/10.29103/jreece.v5i1.18165
Article Metrics


Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Alvin Alvesaldy, Asrianda, Ar Razi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
situs togel situs toto macau 4d situs toto