Implementation of Industrial Internet of Things-Based Scalar Control Method Using PID Controller for Multiple Three-Phase Induction Motor Control

Angga Wahyu Aditya, Restu Mukti Utomo, Nur Rani Alham, Faisal Faizz Ramadhanu

Abstract


Developing industrial standard induction motor control devices is inseparable from the advantages and ease of implementation. Induction motor control has developed rapidly since the development of semiconductor technology, which allows for more efficient, flexible, and accessible settings. The third industrial revolution makes it easier to control induction motors by meeting device standards and data communication systems. The development of cloud technology and the industrial Internet of Things in the fourth industrial revolution makes it easier to quickly control multiple induction motors from various places. Industry-standard devices such as human-machine interface, programmable logic control, and inverters are used to determine the performance of multiple induction motors using a scalar method based on PID controllers with a mobile phone remote control. PID performance is analyzed under transient conditions by measuring the rise time value and overshoot percentage. Meanwhile, the parameters measured in steady-state conditions are the average steady-state error values. The parameters on the PID controller are adjusted intuitively. The parameters used in data collection consist of the first parameter with the value of  Kp=26,  Ki=14, and  Kd=12, and the second parameter with the value of  Kp=29,  Ki=15, and  Kd=0. The rise time value will increase along with the given speed reference. The overshoot percentage value depends on the speed reference and the PID parameter value. At the same time, the average steady-state error value is below 5% for almost all speed references under loaded and unloaded conditions.

Keywords


Multiple Induction Motor; IIoT; Scalar Control; Industrial Instrument

Full Text:

PDF

References


Abdel-Kader, F. ., Abou Mobarka, A. E., & Abouel-Fadl, W. S. (1999). New Phylosophy For Pole Amplitude Modulation In The Three Phase Induction Machines. Erj. Engineering Research Journal, 22(3), 87–102. Https://Doi.Org/10.21608/Erjm.1999.72452

Aditya, A. W., Ihsan, I., Utomo, R. M., & Hilmansyah, H. (2019). Evaluasi Motor Listrik Sebagai Penggerak Mobil Listrik. Jrst (Jurnal Riset Sains Dan Teknologi), 3(2), 55. Https://Doi.Org/10.30595/Jrst.V3i2.4424

Azizipanah-Abarghooee, R., & Malekpour, M. (2020). Smart Induction Motor Variable Frequency Drives For Primary Frequency Regulation. Ieee Transactions On Energy Conversion, 35(1), 1–10. Https://Doi.Org/10.1109/Tec.2019.2952318

Barbosa, R., Pelzl, M., Cordero, R., Caramalac, M., & Suemitsu, W. (2023). Didactic Fpga-In-The-Loop Scalar Fuzzy Control Setup For Motor Drive Education. Cobep 2023 - 17th Brazilian Power Electronics Conference And Spec 2023 - 8th Ieee Southern Power Electronics Conference, Proceedings. Https://Doi.Org/10.1109/Spec56436.2023.10407678

Bobojanovo, M. (2023). Induction Machine With Pole-Changing Winding For Turbomechanisms. Archives Of Electrical Engineering, 72(2), 415–428. Https://Doi.Org/10.24425/Aee.2023.145417

Dehbashi, N., Seyyedhosseini, M., & Yazdian-Varjani, A. (2022). Iot Based Condition Monitoring And Control Of Induction Motor Using Raspberry Pi. 2022 13th Power Electronics, Drive Systems, And Technologies Conference, Pedstc 2022, 134–138. Https://Doi.Org/10.1109/Pedstc53976.2022.9767328

Dutta, K. K., Devanshu, A., & Allamsetty, S. (2024). Scalar-Controlled Three-Phase Induction Motor Drive Using Fpga-Based Wavect Controller. 2024 3rd International Conference On Power Electronics And Iot Applications In Renewable Energy And Its Control, Parc 2024, 264–268. Https://Doi.Org/10.1109/Parc59193.2024.10486589

Dwiyaniti, M., Situmorang, Y. E. S., Handoyo, Y. D., Setiana, H., & Wardhany, A. K. (2023). Implementation Of Iot On Plc-Based Induction Motor Speed Control. Proceedings - Iccteie 2023: 2023 International Conference On Converging Technology In Electrical And Information Engineering, 118–123. Https://Doi.Org/10.1109/Iccteie60099.2023.10366716

Gundewar, S. K., & Kane, P. V. (2021). Condition Monitoring And Fault Diagnosis Of Induction Motor. In Journal Of Vibration Engineering And Technologies (Vol. 9, Issue 4). Https://Doi.Org/10.1007/S42417-020-00253-Y

Guo, Z., Zhang, J., Sun, Z., & Zheng, C. (2017). Indirect Field Oriented Control Of Three-Phase Induction Motor Based On Current-Source Inverter. Procedia Engineering, 174, 588–594. Https://Doi.Org/10.1016/J.Proeng.2017.01.192

Happyanto, D. C., & Aditya, A. W. (2022). Chattering Reduction Effect On Power Efficiency Of Ifoc Based Induction Motor. Jurnal Infotel, 14(2), 154–160. Https://Doi.Org/10.20895/Infotel.V14i2.753

Hareesh, A., & Jayanand, B. (2021). Scalar And Vector Controlled Infinite Level Inverter (Ili) Topology Fed Open-Ended Three-Phase Induction Motor. Ieee Access, 9, 98433–98459. Https://Doi.Org/10.1109/Access.2021.3096125

Kim, S. H., & Jung, T. U. (2021). A Study On Pole Change Method Of Capacitor-Run Single-Phase Induction Motor. Icems 2021 - 2021 24th International Conference On Electrical Machines And Systems, 1419–1423. Https://Doi.Org/10.23919/Icems52562.2021.9634401

Latif, T., Agoro, S., Jaffar, M. Z. M., & Husain, I. (2023). Dynamic Loss Minimization Control Of A 4-Pole/2-Pole Electronic Pole-Changing Induction Motor Using A Look-Up Table. Ieee Transactions On Industry Applications, 59(6), 6715–6725. Https://Doi.Org/10.1109/Tia.2023.3307054

Lee, K., & Han, Y. (2022). Reactive-Power-Based Robust Mtpa Control For V/F Scalar-Controlled Induction Motor Drives. Ieee Transactions On Industrial Electronics, 69(1), 169–178. Https://Doi.Org/10.1109/Tie.2021.3055183

Lima, F., Kaiser, W., Da Silva, I. N., & De Oliveira, A. A. A. (2014). Open-Loop Neuro-Fuzzy Speed Estimator Applied To Vector And Scalar Induction Motor Drives. Applied Soft Computing, 21, 469–480. Https://Doi.Org/10.1016/J.Asoc.2014.03.044

Matsumoto, H., & Sakai, K. (2022). A Motor Capable Of Conversion Between Synchronous And Induction Motors With Pole Change For Electric Vehicles. 2022 Ieee Energy Conversion Congress And Exposition, Ecce 2022. Https://Doi.Org/10.1109/Ecce50734.2022.9947446

Metwly, M. Y., Abdel-Majeed, M. S., Abdel-Khalik, A. S., Torki, M., Hamdy, R. A., Hamad, M. S., & Ahmed, S. (2020). Iot-Based Supervisory Control Of An Asymmetrical Nine-Phase Integrated On-Board Ev Battery Charger. Ieee Access, 8, 62619–62631. Https://Doi.Org/10.1109/Access.2020.2984737

Nayli A., G. S. , A. F. B. (2015). Implantation Of The Scalar Control For The Open-End Winding Induction Machine On Fpga Spartan 3e. Journal Of Electrical Systems, 11(4). Https://Journal.Esrgroups.Org/Jes/Article/View/340

Orfanoudakis, G. I., Yuratich, M. A., & Sharkh, S. M. (2024). Current Balancing Of Scalar-Controlled Induction Motors With Long Imbalanced Cables For Artificial Lift Systems. E-Prime - Advances In Electrical Engineering, Electronics And Energy, 7, 100391. Https://Doi.Org/10.1016/J.Prime.2023.100391

Pavithra, G., & Rao, V. V. (2018). Remote Monitoring And Control Of Vfd Fed Three Phase Induction Motor With Plc And Labview Software. Proceedings Of The International Conference On I-Smac (Iot In Social, Mobile, Analytics And Cloud), I-Smac 2018, 329–335. Https://Doi.Org/10.1109/I-Smac.2018.8653657

Prabudha, B. V., & Madhusudhanan, D. (2019). Vector Control Of Induction Motor Using Multi-Level Inveher And Lot. Proceedings Of The 2019 2nd International Conference On Power And Embedded Drive Control, Icpedc 2019, 208–213. Https://Doi.Org/10.1109/Icpedc47771.2019.9036685

Prasetia, A. M., & Santoso, H. (2018). Implementation Of Scalar Control Method For 3 Phase Induction Motor Speed Control. Elinvo (Electronics, Informatics, And Vocational Education), 3(1), 63–69. Https://Doi.Org/10.21831/Elinvo.V3i1.19460

Saffar, E., Ghanbari, M., Ebrahimi, R., & Jannati, M. (2023). A Simple Fault-Tolerant Control Method For Open-Phase Three-Phase Induction Motor Drives. Control Engineering Practice, 136, 105525. Https://Doi.Org/10.1016/J.Conengprac.2023.105525

Setiyono, S., & Dwinanto, B. (2021). Performance Comparison Modeling Between Single-Phase Cycloconverters And Three-Phase Cycloconverters Using Matlab Simulink Tools. Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika, 7(2), 217–229. Https://Doi.Org/10.26555/Jiteki.V7i2.20225

Sieklucki, G. (2018). An Investigation Into The Induction Motor Of Tesla Model S Vehicle. 2018 International Symposium On Electrical Machines, Sme 2018. Https://Doi.Org/10.1109/Isem.2018.8442648

Suetake, M., Da Silva, I. N., & Goedtel, A. (2011). Embedded Dsp-Based Compact Fuzzy System And Its Application For Induction-Motor V/F Speed Control. Ieee Transactions On Industrial Electronics, 58(3), 750–760. Https://Doi.Org/10.1109/Tie.2010.2047822

Syawali, R., & Meliala, S. (2023). Iot-Based Three-Phase Induction Motor Monitoring System. Journal Of Renewable Energy, Electrical, And Computer Engineering, 3(1), 12–18. Https://Doi.Org/10.29103/Jreece.V3i1.9811

Tran, M. Q., Elsisi, M., Mahmoud, K., Liu, M. K., Lehtonen, M., & Darwish, M. M. F. (2021). Experimental Setup For Online Fault Diagnosis Of Induction Machines Via Promising Iot And Machine Learning: Towards Industry 4.0 Empowerment. Ieee Access, 9, 115429–115441. Https://Doi.Org/10.1109/Access.2021.3105297

Vadi, S., Bayindir, R., Toplar, Y., & Colak, I. (2022). Induction Motor Control System With A Programmable Logic Controller (Plc) And Profibus Communication For Industrial Plants — An Experimental Setup. Isa Transactions, 122, 459–471. Https://Doi.Org/10.1016/J.Isatra.2021.04.019

Venugopal, C., Bhuvaneswari, T., & Immanuel, S. (2023). Analysis Of 12 Pulse Three- Phase To Three - Phase Cycloconverter Drive For Induction Motor Load. Journal Of Engineering Research, 11(1), 100018. Https://Doi.Org/10.1016/J.Jer.2023.100018

Waleed, U., Waseem, M., Shaukat, H., Ijaz, A., Almalaq, A., & Mohamed, M. A. (2021). An Efficient Fpga Based Scalar V/F Control Mechanism Of Three Phase Induction Motor For Electric Vehicles. Proceedings Of 2021 31st Australasian Universities Power Engineering Conference, Aupec 2021. Https://Doi.Org/10.1109/Aupec52110.2021.9597831




DOI: https://doi.org/10.29103/jreece.v4i2.16702

Article Metrics

 Abstract Views : 37 times
 PDF Downloaded : 10 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Angga Wahyu Aditya, Restu Mukti Utomo, Nur Rani Alham, Faisal Faizz Ramadhanu

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.