Design and Development of a Vertical Axis Wind Turbine with PVC Blades Using Solidworks Simulation

Ramadan Bimo Anggoro, Ramadhani Setyobudi, Amajida Sadrina, Siti Chalimah, Muhammad Hendra Budi Satria

Abstract


Savonius wind turbines have better performance in locations with varying wind directions compared to horizontal axis wind turbines. However, their drawback lies in their low performance coefficient. The main objective of this study is to investigate the optimal design of a vertical axis wind turbine of the Savonius type. The parameters investigated include blade thickness and blade arc angle. This study was conducted using computational fluid dynamics (CFD) simulations with SolidWorks software. The simulation results show that at various blade thicknesses, there are significant differences in the obtained power coefficient () values. At a blade thickness of 2 mm, the highest power coefficient () reached 0.38 with a blade arc angle of 130º. Meanwhile, a blade thickness of 3 mm showed a maximum power coefficient () of 0.41 at a blade arc angle of 120º. However, at a thickness of 4 mm, there was a significant increase with the highest power coefficient () reaching 0.45 at a blade arc angle of 110º. This indicates that the most efficient shape for a Savonius wind turbine is with a blade thickness of 4 mm, a blade arc angle of 110º, a blade spacing of 3 cm, and an overlap ratio of 0.42, providing a maximum power coefficient () of 0.45.

Keywords


Savonius Wind Turbine; Computational Fluid Dynamics; Power Coefficient; Blade Arc Angle; Blade Thickness

Full Text:

PDF

References


Afidah, Z., Yushardi, Y., & Sudarti, S. (2023). Analisis Potensi Pembangkit Listrik Tenaga Bayu Dengan Turbin Angin Sumbu Vertikal Di Kecamatan Sangkapura Kabupaten Gresik. Jurnal Engine: Energi, Manufaktur, Dan Material, 7(1), 8–14.

Ajayi, O. A. (2012). Application Of Automotive Alternators In Small Wind Turbines.

Bedon, G., Paulsen, U. S., Madsen, H. A., Belloni, F., Castelli, M. R., & Benini, E. (2017). Computational Assessment Of The Deepwind Aerodynamic Performance With Different Blade And Airfoil Configurations. Applied Energy, 185, 1100–1108.

Bela"Id, F., & Zrelli, M. H. (2019). Renewable And Non-Renewable Electricity Consumption, Environmental Degradation And Economic Development: Evidence From Mediterranean Countries. Energy Policy, 133, 110929.

Ebrahimpour, M., Shafaghat, R., Alamian, R., & Safdari Shadloo, M. (2019). Numerical Investigation Of The Savonius Vertical Axis Wind Turbine And Evaluation Of The Effect Of The Overlap Parameter In Both Horizontal And Vertical Directions On Its Performance. Symmetry, 11(6), 821.

Mahata, S., Harsh, P., & Shekher, V. (2024). Comparative Study Of Time-Series Forecasting Models For Wind Power Generation In Gujarat, India. E-Prime-Advances In Electrical Engineering, Electronics And Energy, 8, 100511.

Manavar, V. (2023). Design Optimization Of Savonius Wind Turbine Using Cfd Simulations.

Murphy, R. (2024). What Is Undermining Climate Change Mitigation? How Fossil-Fuelled Practices Challenge Low-Carbon Transitions. Energy Research & Social Science, 108, 103390.

Nakhoda, Y. I., & Saleh, C. (2015). Rancang Bangun Kincir Angin Pembangkit Tenaga Listrik Sumbu Vertikal Savonius Portabel Menggunakan Generator Magnet Permanen. Industri Inovatif: Jurnal Teknik Industri, 5(2), 19–24.

Nasr, K., & Others. (2023). Computational Fluid Dynamics Investigations Over Conventional And Modified Savonius Wind Turbines. Heliyon, 9(6).

Parinduri, L., & Parinduri, T. (2020). Konversi Biomassa Sebagai Sumber Energi Terbarukan. Jet (Journal Of Electrical Technology), 5(2), 88–92.

Qasemi, K., & Azadani, L. N. (2020). Optimization Of The Power Output Of A Vertical Axis Wind Turbine Augmented With A Flat Plate Deflector. Energy, 202, 117745. Https://Doi.Org/10.1016/J.Energy.2020.117745

Rezaeiha, A., Kalkman, I., Montazeri, H., & Blocken, B. (2017). Effect Of The Shaft On The Aerodynamic Performance Of Urban Vertical Axis Wind Turbines. Energy Conversion And Management, 149, 616–630.

Roy, S., & Saha, U. K. (2015). Wind Tunnel Experiments Of A Newly Developed Two-Bladed Savonius-Style Wind Turbine. Applied Energy, 137, 117–125.

Samosir, R., Pane, M., & Lumbantoruan, J. H. (2021). Perancangan Turbin Angin Vertikal Modifikasi Gabungan Savonius Dan Darrieus Menggunakan Geometri Naca 0018. Journal Of Mechanical Engineering Manufactures Materials And Energy, 5(1), 69–77.

Setyono, A. E., & Kiono, B. F. T. (2021). Dari Energi Fosil Menuju Energi Terbarukan: Potret Kondisi Minyak Dan Gas Bumi Indonesia Tahun 2020--2050. Jurnal Energi Baru Dan Terbarukan, 2(3), 154–162.

Sudrajat, A., Hidayanti, F., Repi, V. V. R., & Widjayahakim, D. (2020). Perancangan Sistem Kontrol Otomatis Turbin Angin Yaw Direction. Jurnal Ilmiah Giga, 23(2), 83–90.

Xu, Y.-L., Peng, Y.-X., & Zhan, S. (2019). Optimal Blade Pitch Function And Control Device For High-Solidity Straight-Bladed Vertical Axis Wind Turbines. Applied Energy, 242, 1613–1625.

Zilberman, M. (2017). Optimization Of Small, Low Cost, Vertical Axis Wind Turbine For Private And Institutional Use. Ace Res. Propos, 9, 43302.

Иванов, И. В., Ковалишена, О. В., & Швабский, О. Р. (2017). Опыт Аудита Обеспечения Качества И Безопасности Медицинской Деятельности В Медицинской Организации По Разделу" Эпидемиологическая Безопасность". Вестник Росздравнадзора, 4, 9–14.




DOI: https://doi.org/10.29103/jreece.v4i2.16561

Article Metrics

 Abstract Views : 75 times
 PDF Downloaded : 34 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Ramadan Bimo Anggoro, Ramadhani Setyobudi, Amajida Sadrina, Siti Chalimah, Muhammad Hendra Budi Satria

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.