Short-Term Forecasting of Electricity Consumption Using Fuzzy Logic
Abstract
The high demand for electricity in the production process at PT Semen Padang requires a system that can cope with various kinds of disturbances. The problem is that the need for electrical loads is dynamic, especially in the short term, allowing fluctuations between electrical loads at uncertain times. A short-term electric energy consumption forecasting method is needed to determine load growth and distributed power supply. This research aims to use a fuzzy logic algorithm to perform short-term electrical energy consumption forecasting and compare the forecasting results with the actual load at PT Semen Padang. The results showed that short-term load forecasting for seven days using the fuzzy Mamdani method, namely Smallest of Maximum (SoM), obtained a percentage MAPE value of 8.15%. Meanwhile, the Weight of Average (WoA) Sugeno defuzzification method gets a portion of the MAPE value of 9.51%. The Sugeno method is more accurate than the Mamdani method in short-term electricity load forecasting for PPI Indarung V PT Semen Padang. If based on the time category, then forecasting the electricity load on holidays is better than predicting on weekdays. However, when viewed in terms of per day, in Wednesday has the smallest average MAPE value of 5.05%.
Keywords
Full Text:
PDFReferences
Blancas, J., & Noel, J. (2018). Short-term load forecasting using fuzzy logic. 2018 IEEE PES Transmission & Distribution Conference and Exhibition-Latin America (T&D-LA), 1–5.
Çevik, H. H., & Çunkacs, M. (2015). Short-term load forecasting using fuzzy logic and ANFIS. Neural Computing and Applications, 26, 1355–1367.
Emidiana, E. (2016). Prediksi Kebutuhan Listrik Jangka Pendek Menggunakan Moving Average. Jurnal Ampere, 1(2), 30–40.
Faysal, M., Islam, M. J., Murad, M. M., Islam, M. I., & Amin, M. R. (2019). Electrical load forecasting using fuzzy system. Journal of Computer and Communications, 7(9), 27–37.
Handayani, T., Halilintar, M. P., & others. (2019). Studi Perkiraan Kebutuhan Energi Listrik Di Kota Dumai Sampai Tahun 2025 Dengan Metoda Fuzzy Logic. SainETIn: Jurnal Sains, Energi, Teknologi, Dan Industri, 3(2), 42–49.
Hasibuan, A., Siregar, W. V., Isa, M., Warman, E., Finata, R., & Mursalin, M. (2022). The Use of Regression Method on Simple E for Estimating Electrical Energy Consumption. HighTech and Innovation Journal, 3(3), 306–318.
Jamaaluddin, J., Hadidjaja, D., Sulistiyowati, I., Suprayitno, E. A., Anshory, I., & Syahrorini, S. (2018). Very short term load forecasting peak load time using fuzzy logic. IOP Conference Series: Materials Science and Engineering, 403(1), 12070.
Kusuma, S. R., Hartati, R. S., & Sukerayasa, I. W. (2020). Pengaruh Jumlah Fungsi Keanggotaan pada Metode Fuzzy Logic Terhadap Hasil Peramalan Beban Listrik Jangka Panjang. Jurnal SPEKTRUM Vol, 7(1).
Mado, I., Rajagukguk, A., Triwiyatno, A., & Fadllullah, A. (2022). Short-term electricity load forecasting model based dsarima. International Journal of Electrical, Energy and Power System Engineering, 5(1), 6–11.
Mado, I., Soeprijanto, A., & Suhartono, S. (2018). Applying of double seasonal ARIMA model for electrical power demand forecasting at PT. PLN Gresik Indonesia. International Journal of Electrical and Computer Engineering, 8(6), 4892.
Magzob, H. H., Abdulwahab, M. M., & Elhadi, Y. (2021). Evaluating of Short-Term Electrical Load Forecasting System Using Fuzzy Logic Control: A Study Case in Sudan. Journal of Engineering and Technology (JET), 12(1), 53–62.
Martinez, M. P., Cremasco, C. P., Gabriel Filho, L. R. A., Junior, S. S. B., Bednaski, A. V., Quevedo-Silva, F., Correa, C. M., da Silva, D., & Padgett, R. C. M.-L. (2020). Fuzzy inference system to study the behavior of the green consumer facing the perception of greenwashing. Journal of Cleaner Production, 242, 116064.
Nugraha, Y. T. (2019). Analisis Perkiraan Konsumsi Energi Listrik Di Sumatera Utara Pada Tahun 2032 Menggunakan Metode Adaptive Neuro Fuzzy Inference System.
P., L., & Author, V. S. F. E. (2018). Fuzzy Logic based Short-Term Electricity Demand Forecast. International Journal of Engineering and Technology, 10(2), 529–534. https://doi.org/10.21817/ijet/2018/v10i2/181002064
RULE, D. T. B. (2020). Analisis Perbandingan Fuzzy Tsukamoto dan Sugeno dalam Menentukan Jumlah Produksi Kain Tenun Menggunakan Base Rule Decision Tree.
Sadaei, H. J., e Silva, P. C. de L., Guimaraes, F. G., & Lee, M. H. (2019). Short-term load forecasting by using a combined method of convolutional neural networks and fuzzy time series. Energy, 175, 365–377.
Suyono, H., Prabawanti, D. O., Shidiq, M., Hasanah, R. N., Wibawa, U., & Hasibuan, A. (2020). Forecasting of Wind Speed in Malang City of Indonesia using Adaptive Neuro-Fuzzy Inference System and Autoregressive Integrated Moving Average Methods. 2020 International Conference on Technology and Policy in Energy and Electric Power (ICT-PEP), 131–136.
Tang, X., Chen, H., Xiang, W., Yang, J., & Zou, M. (2022). Short-term load forecasting using channel and temporal attention based temporal convolutional network. Electric Power Systems Research, 205, 107761.
Tang, X., Dai, Y., Liu, Q., Dang, X., & Xu, J. (2019). Application of bidirectional recurrent neural network combined with deep belief network in short-term load forecasting. IEEE Access, 7, 160660–160670.
Viswavandya, M., Sarangi, B., Mohanty, S., & Mohanty, A. (2020). Short term solar energy forecasting by using fuzzy logic and ANFIS. Computational Intelligence in Data Mining: Proceedings of the International Conference on ICCIDM 2018, 751–765.
DOI: https://doi.org/10.29103/jreece.v3i2.11281
Article Metrics
Abstract Views : 212 timesPDF Downloaded : 96 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Amri M. Rizaldi, Ahmad Ridwan, Yuan Anisa, Rudi Salam, Gramandha W. Intyanto, Daniel T. Cotfas, Vo Hung Cuong, Uduak I. Udoudom
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.