Implementation of Data Mining for Vertigo Disease Classification Using the Support Vector Machine (SVM) Method

Nadya Jasmin, Rozzi Kesuma Dinata, Ilham Sahputra

Abstract


This research aims to implement advanced data mining techniques for the classification of vertigo disorders using the Support Vector Machine (SVM) method. Vertigo, characterized by a spinning sensation, can be triggered by various factors such as nervous system disorders and inner ear infections. With the rising prevalence of vertigo patients, there is a pressing need for more effective and efficient diagnostic tools. This study was conducted at Puskesmas Jangka in Bireuen Regency, involving the collection of vertigo patient data from the years 2023-2024. The collected data underwent a comprehensive preprocessing pipeline, including data cleaning, partitioning into training and testing datasets, and subsequent implementation of the SVM algorithm. The performance of the model was evaluated using the Mean Absolute Percentage Error (MAPE), resulting in a MAPE value of 28.47%.

Keywords


Vertigo; Data Mining; Support Vector Machine (SVM); MAPE; Clasification

Full Text:

PDF (Indonesian)

References


I. Sahputra, M. Mauliza, and S. F. A. Zohra, “The Implementasi Algoritma C5.0 Pada Klasifikasi Status Gizi Ibu Hamil di Kota Lhokseumawe,” metik. j., vol. 7, no. 1, pp. 42–46, Jun. 2023, doi: 10.47002/metik.v7i1.562.

M. Amin and Y. A. Lestari, “Pengalaman Pasien Vertigo di Wilayah Kerja Puskesmas Lingkar Timur,” JKA, vol. 2, no. 1, pp. 22–33, Jun. 2020, doi: 10.31539/jka.v2i1.1087.

H. Apriyani and K. Kurniati, “Perbandingan Metode Naïve Bayes Dan Support Vector Machine Dalam Klasifikasi Penyakit Diabetes Melitus,” Journal-ITA, vol. 1, no. 3, pp. 133–143, Dec. 2020, doi: 10.51519/journalita.volume1.isssue3.year2020.page133-143.

I. P. Sari, A. Jannah, A. M. Meuraxa, A. Syahfitri, and R. Omar, “Perancangan Sistem Informasi Penginputan Database Mahasiswa Berbasis Web,” hello world j. ilmu kompʹût., vol. 1, no. 2, pp. 106–110, Jul. 2022, doi: 10.56211/helloworld.v1i2.57.

R. T. Adek, Z. Yunizar, and M. Febriliansyah, “SISTEM INFORMASI GEOGRAFIS PEMETAAN DAN PENENTUAN LOKASI WISATA ALAM STRATEGIS DENGAN METODE SIMPLE ADDITIVE WEIGHTING (SAW),” PJSTI, vol. 9, no. 1, pp. 49–56, Oct. 2023, doi: 10.31961/positif.v9i1.1711.

T. Ardiani, F. Yudhiono, A. T. Sanna, S. Wahyuni, and S. Gani, “Karakteristik Penderita Vertigo Perifer yang Berobat di Rumah Sakit Jala Ammari Lantamal VI Makassar Tahun 2020-2022,” vol. 8, 2024.

H. Susanto and S. Sudiyatno, “Data mining untuk memprediksi prestasi siswa berdasarkan sosial ekonomi, motivasi, kedisiplinan dan prestasi masa lalu,” jpv, vol. 4, no. 2, Jun. 2014, doi: 10.21831/jpv.v4i2.2547.

M. M. Mutoffar and A. Fadillah, “KLASIFIKASI KUALITAS AIR SUMUR MENGGUNAKAN ALGORITMA RANDOM FOREST,” Naratif, vol. 4, no. 2, pp. 138–146, Dec. 2022, doi: 10.53580/naratif.v4i2.160.

C. Aldama and M. Nasir, “KLASIFIKASI PENYAKIT DIABETES MENGGUNAKAN METODE SUPPORT VECTOR MACHINE PADA RUMAH SAKIT UMUM PRABUMULIH,” 2023.

F. Liantoni and A. Agusti, “Forecasting Bitcoin using Double Exponential Smoothing Method Based on Mean Absolute Percentage Error,” JOIV : Int. J. Inform. Visualization, vol. 4, no. 2, pp. 91–95, May 2020, doi: 10.30630/joiv.4.2.335.

S. Y. Pangestu, Y. Astuti, and L. D. Farida, “ALGORITMA SUPPORT VECTOR MACHINE UNTUK KLASIFIKASI SIKAP POLITIK TERHADAP PARTAI POLITIK INDONESIA,” vol. 3, no. 1, 2019.

R. B. Handoko and S. Suyanto, “Klasifikasi Gender Berdasarkan Suara Menggunakan Support Vector Machine,” IndoJC, vol. 4, no. 1, p. 9, Mar. 2019, doi: 10.21108/INDOJC.2019.4.1.244.

N. Fitriyah, B. Warsito, and D. A. I. Maruddani, “ANALISIS SENTIMEN GOJEK PADA MEDIA SOSIAL TWITTER DENGAN KLASIFIKASI SUPPORT VECTOR MACHINE (SVM,” J.Gauss, vol. 9, no. 3, pp. 376–390, Aug. 2020, doi: 10.14710/j.gauss.v9i3.28932.

N. Neneng, N. U. Putri, and E. R. Susanto, “Klasifikasi Jenis Kayu Menggunakan Support Vector Machine Berdasarkan Ciri Tekstur Local Binary Pattern,” CBN, vol. 4, no. 02, Jan. 2021, doi: 10.29406/cbn.v4i02.2324.

A. S. Febrianti, T. A. Sardjono, and A. F. Babgei, “Klasifikasi Tumor Otak pada Citra Magnetic Resonance Image dengan Menggunakan Metode Support Vector Machine,” JTITS, vol. 9, no. 1, pp. A118–A123, Jul. 2020, doi: 10.12962/j23373539.v9i1.51587.




DOI: https://doi.org/10.29103/jacka.v1i4.17807

Article Metrics

 Abstract Views : 53 times
 PDF (Indonesian) Downloaded : 8 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Nadya Jasmin, Rozzi Kesuma Dinata, Ilham Sahputra

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Journal of Advanced Computer Knowledge and Algorithms


JACKA indexed by

EuroPub_logoGoogle_Scholar_logogaruda_logodimension_logocrossref_logobase_logoworldcat_logoscilit_logoleiden_logo


Berkas:Logo-Unimal-Aceh Utara.png - Wikipedia bahasa Indonesia,  ensiklopedia bebas
Department of Informatics
Faculty of Engineering
Universitas Malikussaleh
Website : UNIVERSITAS MALIKUSSALEH
Journal Email : jacka@unimal.ac.id


Location


Creative Commons License
Journal of Advanced Computer Knowledge and Algorithms is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.