Independent Campus Student Exchange Sentiment Analysis Using SVM

Putri Irhami, Eva Darnila, Fadlisyah Fadlisyah

Abstract


Support Vector Machine (SVM) is a machine learning method that is widely used for regression and classification problems, especially application review classification. Student exchange is one of the programs that universities must prepare. The student exchange program is intended to reduce the problem of disparities in educational facilities and infrastructure in Indonesia. The advantage of student exchange is that they can manage their time, have high awareness in communicating, are able to admit when they experience problems and need help, independent student exchange offers study options of up to 20 credits, both covering Higher Education Recipients courses and activities in the form of the Nusantara Module. Additionally, students are offered the option to register for a maximum of 6 credits of higher education online. The method used in this research is the SVM algorithm, the dataset used consists of 1000 comment reviews with a ratio of 70;30. This research was implemented in a web system using the Python programming language. Of the 300 test data implemented with 700 training data. The Support Vector Machine (SVM) algorithm in classifying review data obtained the highest accuracy in dividing training data & test data 70:30 at 85.00% then precision 28.33%, recall 33.33%

Keywords


Support Vector Machine; student exchange

Full Text:

PDF (Indonesian)

References


Abdurrazzaq, M. A. (2023). Analisis Ulasan Aplikasi MyPertamina Menggunakan Topic Modeling dengan Latent Dirichlet Allocation. 10(1), 1–6.

Chakraborty, K., Bhatia, S., Bhattacharyya, S., Platos, J., Bag, R., & Hassanien, A. E. (2020). Sentiment Analysis of COVID-19 tweets by Deep Learning Classifiers— A study to show how popularity is affecting accuracy in social media. Applied Soft Computing Journal, 97, 106754. https://doi.org/10.1016/j.asoc.2020.106754

Darnila, E., Al-Kautsar, H., & Iksan, Y. (2020). Analysis of Patient Disease Trends Based on Medical Record Data Using the C4. 5 Algorithm. Login: Jurnal Teknologi

Darwis, D., Siskawati, N., & Abidin, Z. (2021). Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Review Data Twitter Bmkg Nasional. Jurnal Tekno Kompak, 15(1), 131. https://doi.org/10.33365/jtk.v15i1.744

Firdaus, A., & Firdaus, W. I. (2021). Text Mining Dan Pola Algoritma Dalam Penyelesaian Masalah Informasi : (Sebuah Ulasan). Jurnal JUPITER, 13(1), 66.

Hidayat, andi nurul. (2015). Analisis Sentimen Terhadap Wacana Politik Pada Media Masa Online Menggunakan Algoritma Support Vector Machine Dan Naive Bayes. Jurnal Elektronik Sistim Informasi Dan Komputer (Jesik), 1(1), 1–7.

Khaidarni, U., Fauzi, A. H., Nisa, H., Galura Gumelar, R., Muldi (2023). Analisis Difusi Inovasi Terhadap Aplikasi Mypertamina. Jurnal Ilmiah Wahana Pendidikan, Januari, 2023(2), 644–652.

Maria, R., Umayah, R. U., Mahardinny, S., Kalana, D. N., & Saputra, D. D. (2023). Analisis Sentimen Persepsi Masyarakat Terhadap Penggunaan Aplikasi My Pertamina Pada Media Sosial Twitter Menggunakan Metode Naïve Bayes Classifier. 1, 1–10.

Munirul, Ula, Alvanof, M. M., & Triandi, R. (2020). Analisa Dan Deteksi Konten Hoax Pada Media Berita. Jurnal Teknologi Terapan & Sains 4.0 Universitas Malikussaleh, 1, 2.

Najib, A. C., Irsyad, A., Qandi, G. A., & Rakhmawati, N. A. (2019). Perbandingan Metode Lexicon-based dan SVM untuk Analisis Sentimen Berbasis Ontologi pada Kampanye Pilpres Indonesia Tahun 2019 di Twitter. Fountain of Informatics Journal, 4(2), 41. https://doi.org/10.21111/fij.v4i2.3573

Purnomo, L. M., & Ayub, M. (2021). Analisis data hasil web scraping untuk menentukan kualitas jurnal ilmiah. Jurnal STRATEGI-Jurnal Maranatha, 3(1),

–132.

Puspitasari, A. M., Ratnawati, D. E., & Widodo, A. W. (2018). Klasifikasi Penyakit Gigi Dan Mulut Menggunakan Metode Support Vector Machine. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(2), 802–810.

Que, V. K. S., Iriani, A., & Purnomo, H. D. (2020). Analisis Sentimen Transportasi Online Menggunakan Support Vector Machine Berbasis Particle Swarm Optimization. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 9(2), 162–170. https://doi.org/10.22146/jnteti.v9i2.102

Rachman, F. F., & Pramana, S. (2020). Analisis Sentimen Pro dan Kontra Masyarakat Indonesia tentang Vaksin COVID-19 pada Media Sosial Twitter. Health Information management Journal, 8(2), 100–109.

Retno, S., Dinata, R.K., & Hasdyna, N. (2023) Evaluasi model data chatbot dalam natural language processing menggunakan k-nearest neighbor. CoSciTech, Vol 4, No 1, 146-153.

Rosmala, D., & Dwipa, G. (2012). Pembangunan Website Content Monitoring System Menggunakan System Menggunakan Difflib Python. Informatika, 3(3), 1–6.

Saputra, D., & Ary, M. (2020). Prediksi Minat Klien pada Produk Deposi Menggunakan Algoritma SVM Parameter Kernel Polynomial. EProsiding Sistem Informasi (POTENSI), 1(1), 162–171.

Yulita, W. (2021). Analisis Sentimen Terhadap Opini Masyarakat Tentang Vaksin Covid-19 Menggunakan Algoritma Naïve Bayes Classifier. Jurnal Data Mining Dan Sistem Informasi, 2(2), 1. https://doi.org/10.33365/jdmsi.v2i2.1344




DOI: https://doi.org/10.29103/jacka.v1i2.14902

Article Metrics

 Abstract Views : 123 times
 PDF (Indonesian) Downloaded : 31 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Putri Irhamni, Eva Darnila, Fadlisyah

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Journal of Advanced Computer Knowledge and Algorithms


JACKA indexed by

EuroPub_logoGoogle_Scholar_logogaruda_logodimension_logocrossref_logobase_logoworldcat_logoscilit_logoleiden_logo


Berkas:Logo-Unimal-Aceh Utara.png - Wikipedia bahasa Indonesia,  ensiklopedia bebas
Department of Informatics
Faculty of Engineering
Universitas Malikussaleh
Website : UNIVERSITAS MALIKUSSALEH
Journal Email : jacka@unimal.ac.id


Location


Creative Commons License
Journal of Advanced Computer Knowledge and Algorithms is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.