Reclamation and sedimentation impacts around the Wairuhu River estuary, Poka-Galala threshold

Yunita A. Noya, Gratia Manuputty

Abstract


Wairuhu River is disembogued on the sill of Poka-Galala, Ambon Bay. The estuary is affected by the coastal reclamation which led to the fester sedimentation. It triggers the problem of altering the shoreline and the dynamics of water movement, as well as the surrounding ecosystem. The modeling approach was applied to reconstruct the alterations around the estuary. The study aimed to estimate the changes on the shoreline, current patterns, and sediment transport patterns (suspended sediment), and to describe marine resources around the estuary of Wairuhu. MIKE 3 FM was utilized to reconstruct the pattern of flow and sediment transport changes, and coordinates plottings from satellite data were used to measure the coastline. The model was validated by using the data of tide and surface flow. The results showed the alteration pattern of the shoreline around the Wairuhu estuary occurred as a result of coastal reclamation. The flow validation (mooring and model) using RMSE was 0.38 which meant there was no difference between the model and mooring. By the model, the flow pattern that passed through the APG was following the tidal pattern. The changes in the tidal platform also occurred on the sediment transport pattern that formed the total distribution pattern of SSC (suspended sediment concentration). Several classes of macroflora and macrofauna were uncovered, such as Malacostraca, Echinoidea, Bivalvia, Asteroidea, Ophiuroidea, and Gastropoda.

Keywords: Modeling; Poka-Galala sill; Sedimentation; Wairuhu River


Full Text:

PDF

References


Berhitu, P. Th. (2005). Studi Proses Sedimentasi Pantai Teluk Ambon. Institut Teknologi Sepuluh November - Surabaya. 117 p. Surabaya: Liberty ITS.

Dahuri, R. (2003). Keanekaragaman Hayati Laut: Aset pembangunan berkelanjutan di Indonesia. (pp. 412). Jakarta: PT. Gramedia Pustaka Utama.

DHI. 2012. MIKE 21 & 3 Flow Model FM ; Hydrodynamic and Transport Module, Scientific Documentation. (pp.58). Denmark: DHI-Denmark.

Fadli, M., Radjawane, I. M., dan Susanna. (2014). Pemodelan hidrodinamika di Perairan Teluk Ambon. Dalam Prosiding Pertemuan Ilmiah Nasional Tahunan X ISOI (hal.6-19). Jakarta: ISOI.

Guey, L., Peter, K., Woon, G., Joon, S. (2015). Tidal Data Generation for Sparse Data Regions in Han River Estuary Located in the Trans-boundary of North and South Korea. International Journal Control and Automation, 8 (2): 203-214.

Hamzah, M. S., Wenno, L. F. (1987). Sirkulasi Arus di Teluk Ambon. (h. 91-101). Teluk Ambon I : Biologi, Perikanan, Oseanografi, dan Geologi, P3O LIPI Ambon.

Horikawa, K. (1988). Nearshore Dynamics and Coastal Processes “Theory, Measurement, and Predictive Models. (pp.522). Tokyo: University of Tokyo Press.

Lasanta. T., Garc´ıa-Ruiz, J. M., Pe´rez-Rontome´, C., Sancho-Marce´n, C. (2000). Runoff and Sediment Yield in a Semi-arid Environment: the effect of land management after farmland abandonment. Catena, 38 (4): 265–278.

López-Tarazón, J. A., Batalla, R. J., Vericat, D., Balasch, J. C. (2010). Rainfall, Runoff and Sediment Transport Relations in a Mesoscale Mountainous Catchment: The River Isábena (Ebro Basin). Catena, 82 (1): 23–34.

Noya Y A 2007. Proses Sedimentasi di Teluk Ambon Dalam. Program Studi Ilmu Kelautan. Universitas Pattimura. Tesis.

Noya, Y. A., Purba, M., Koropitan, A. F., dan Prartono, T. (2016). Pemodelan Transport Sedimen Kohesif pada Teluk Ambon Dalam. Jurnal Ilmu Dan Teknologi Kelautan Tropis 8 (2): 671-687.

Noya, Y. A., Purba, M., Koropitan, A. F., dan Prartono, T. (2016). Modeling the Barotropic Circulation on Inner Ambon Bay. International Journal of Oceans and Oceanography, 2 (10): 265-286

Ramakrishnan, R., Rajawat, A. S. (2012). Simulation of Suspended Sediment Transport Initialized with Satellite Derived Suspended Sediment Concentration. Journal Earth Systems Sciences, 121 (5): 1201-1213

Rossi, A., Massei, N., Laignel, B., Sebag, D., Copard, Y. (2009). The Response of the Mississippi River to Climate Fluctuations and Reservoir Construction as Indicated by Wavelet Analysis of Streamflow and Suspended-sediment Load, 1950–1975. Journal of Hydrology, 377 (3-4): 237–244.

Sathish, K. S., Balaji, R. (2015). Tidal Hydrodynamic along Gulf of Khambhat, West-coast of India. Aquatic procedia (International Conference on Water Resources, Coastal and Ocean Engineering), 4 (1):41-48.

Syahputra, H., Nugraha, R. B. A. (2016). Analisis Perbandingan Akurasi Model Prediksi Pasang Surut: Studi Kasus Di Selat Larantuka, Flores Timur, Nusa Tenggara Timur. Jurnal Maspari 8 (2): 119-126.

Ulses, C., Grenz, C., Marsaleix, P., Schaaff, E., Estournel, C., Meule´, S., Pinazo, C. 2005. Circulation in a Semi-enclosed Bay under Influence of Strong Freshwater Input. Journal of Marine Systems, 56 (1-2): 113– 132.

Vassiliki, H. K. (2001). River Plume Development in Semi-enclosed Mediterranean Regions: North Adriatic Sea and Northwestern Aegean Sea. Journal of Marine Systems, 30 (3-4):181–205.

Wei, X., Ni, P., Zhan, H. (2013). Monitoring Cooling Water Discharge using Lagrangian Choherent Structures: a case study in Daya Bay, China. Marine Pollution Bulletin, 1 (5): 105-113.

Wenno, L. F. (1986). Beberapa Keunikan Teluk Ambon Bagian Dalam. Lonawata No.4. LIPI Ambon.

Yimnang, G., Victor, S., Wolansk, E., Richmond, R. H. (2003). Trapping of Fine Sediment in a Semi-Enclosed Bay, Palau, Micronesia. Estuarine, Coastal and Shelf Science, 57 (5-6): 941–949.

Zhang, Q., Xu, C-y., Becker, S., Jiang, T. (2006). Sediment and Runoff Changes in the Yangtze River Basin during Past 50 Years. Journal of Hydrology, 331 (3-4): 511– 523.




DOI: https://doi.org/10.29103/aa.v10i2.6880

Article Metrics

 Abstract Views : 211 times
 PDF Downloaded : 10 times

Refbacks

  • There are currently no refbacks.



Copyright (c) Acta Aquatica: Aquatic Sciences Journal   

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.