Functional properties from nile tilapia (Oreochromis niloticus (Linnaeus, 1758)) frame protein hydrolysis
Abstract
This study was to determine the functional properties of fish protein hydrolysis produced from tilapia frame. This study used a factorial design where the first factor was different types of proteolytic enzymes (E1 = bromelain, E2 = papain) and the second factor was different hydrolysis time (T1 = 5 hours, T2 = 6 hours) and was carried out with 3 replications. The results of the analysis showed that the different types of enzymes and hydrolysis time had a significant difference on the yield, degree of hydrolysis, proximate, viscosity, and protein solubility. This product has the potential to be used as food additives that can give special function properties so further research needs to be carried out to investigate these special functional properties for health and reduce the fat content that can affect the self-life product.
Keywords: Functional properties; Protein hydrolysis; Nile tilapia frame
Full Text:
PDFReferences
Aditya, D., Deanti H., Ma’arif, J.M., Dewi, E.N. 2018. Produksi hidrolisat protein jeroan ikan nila (Oreochromis niloticus) menggunakan enzim bromeilin buah nanas (Ananas comosus). Prosiding Seminar Nasional Kelautan XIII “Implementasi Hasil Riset Sumber Daya Laut dan Pesisir dalam Rangka Mencapai Kemandirian Ekonomi Nasional”. Fakultas Teknik dan Ilmu Kelautan Universitas Hang Tuah, Surabaya 12 Juli 2018.
Abuine, R., Rathnayake, A. U., & Byun, H. G. (2019). Biological activity of peptides purified from fish skin hydrolysates. Fisheries and Aquatic Sciences, 22(1), 1–14. DOI: https://doi.org/10.1186/s41240-019-0125-4
Annisa, S., Darmanto, Y.S., Amalia, U. 2017. Pengaruh perbedaan spesies ikan terhadap hidrolisat protein ikan dengan penambahan enzim papain. Saintek Perikanan. Vol. 13 No. 1: 24-30. ISSN: 1858-4748.
Association of Official Analytical Chemist (AOAC). 2005. Official Method of Analysis of the Association of Official Analytical Chemist. Arlington: The Association of Official Analytical Chemist Inc.
Benjakul, S., Yarnpakdee, S., Senphan, T., Halldorsdottir, S.M., & Kristinsson, H.G. (2014). Fish protein hydrolysates: Production, bioactivities, and applications. In H. G. Kristinsson (Ed.), Antioxidants and functional components in aquatic foods (pp. 237–281). Chichester, UK: John Wiley & Sons Ltd.
Chalamaiah, M., Jyothirmayi, T., Diwan, P.V., Kumar, B.D. 2015. Antioxidant activity and functional properties of enzymatic protein hydrolysate from common carp (Cyprinus carpio) roe (egg). Journal Food Science Technology. DOI : https://doi.org/10.1007/s13197-015-1714-6.
de Castro, R. J. S., & Sato, H. H. (2014). Comparison and synergistic effects of intact proteins and their hydrolysates on the functional properties and antioxidant activities in a simultaneous process of enzymatic hydrolysis. Food and Bioproducts Processing, 92(1), 80–88.
He, S., Franco, C., & Zhang, W. (2013). Functions, applications and production of protein hydrolysates from fish processing co-products (FPCP). Food ResearcH International, 50(1), 289–297.
Hoyle, N.T., Merrit, J.H. 1994. Quality of fish protein hydrolysates from herring (clupea harengus). Journal of Food Science. 59 (1). 76 – 79.
Latorres, J. M., Rios, D. G., Saggiomo, G., Wasielesky, W., & Prentice-Hernandez, C. (2018). Functional and antioxidant properties of protein hydrolysates obtained from white shrimp (Litopenaeus vannamei). Journal of Food Science and Technology, 55(2), 721–729. DOI: https://doi.org/10.1007/s13197-017-2983-z.
Lima, D.A.S., Santos, M.M.F., Duvale, R.L.F., Bezzera, T.K.A., Araujo, I.B. da Silva., Madruga, M.S., Pereira dan Silva, F.A. 2020. Technological properties hydrolysate from the cutting by product of serra Spanish mackerel (Scomberomus brasiliensis). Journal Food Science Technology. DOI: https://doi.org/10.1007/s13197-020-04797-5.
Mahdad Mahdabi and Seyed Pezhman Hosseini Shekarabi. (2018). A comparative study on some functional and antioxidant properties of kilka meat, fishmeal, and stickwater protein hydrolysates. Journal of food Aquatic Food Product Technology. DOI: https://doi.org/10.1080/10498850.2018.1500503.
Nurilmala, M., Nurhayati, T., Roskananda, R. 2018. Limbah industri filet ikan patin untuk hidrolisat protein. Jurnal Pengolahan Hasil Perikanan Indonesia. Vol. 21. No. 2. 287 – 294.
Peinado I, Koutsidis G, Ames J (2016) Production of seafood flavor formulations from enzymatic hydrolysates of fish by-products. Food Sci Technol 66:444–452. https://doi.org/10.1016/j.lwt.2015.09.025.
Prasetyo, D.Y.B., Sarmin, S., Setyastuti, A.I., Kurniawati, A. (2020). Pengaruh perbedaan enzim proteolitik dan lama hidrolisa terhadap kualitas hidrolisat protein ikan dari limbah industri fillet ikan Nila (Oreochromis niloticus (Linnaeus, 1758)). Jurnal Ilmu Kelautan Kepulauan. 3 (2). 202-210. DOI: http://dx.doi.org/10.33387/jikk.v3i2.2586.
Riyadi, P.H., Suprayitno, E., Aulann’iam, A., Sulistiyati, T.D. 2019. Chemical characteristics and amino acids profile of protein hydrolysates of nile tilapia (Oreochromis niloticus) viscera. 2019. World Veterinary Journal. 9 (4): 324-328.
Roslan, J., Yunos., K.F.Md., Abdullah, N., Kamal, S.M.M. 2014. Characterization of fish protein hydrolysate from Tilapia (Oreochromis niloticus) by-Product. Agriculture and Agricultural Science Procedia. 2 (2014): 312-319. ST26943, 2nd International Conference on Agricultural and Food Engineering. CAFEi2014”.
Shirahigue, L. D., Silva, M. O., Camargo, A. C., Sucasas, L. F. D. A., Borghesi, R., Cabral, I.S.R., ... Oetterer, M. (2016). The feasibility of increasing lipid extraction in Tilapia (Oreochromis niloticus) waste by proteolysis. Journal of Aquatic Food Product Technology, 25. 265–271.
Sila A and Bougatef A. 2016. Antioxidant peptides from marine by-products: isolation, identification and application in food systems. A review. J Funct Foods 21:10–26. https://doi.org/101016/j.jff.2015.11.007.
Silva, J.F.X., Ribeiro, K., Silva, J.F., Cahu, T.B., Bezerra, R.S. (2014). Utilization of tilapia processing waste for the production of fish protein hydrolysate. Animal Feed Science and Technology. 196. 96 – 106. DOI: http://dx.doi.org/10.1016/j.anifeedsci.2014.06.010.
Slizyte, R., Rommi, K., Mozuraityte, R., Eck, P., Five, K., Rustad, T. 2016. Bioactivities of fish protein hydrolysates from defatted salmon backbones, Biotechnology Reports. Biotechnology-Reports. DOI: http://dx.doi.org/10.1016/j.btre.2016.08.003.
Tejjpal. C.S., Vijayagopal. P., Elavarasan, K., Linga Prabu, D., Lekshmi, R.G.K., Asha, K.K., Anandan, R., Chatterjee, N.S., Mathew. S. (2017). Antioxidant, functional properties and amino acids composition of pepsin-derived protein hydrolysate from whole tilapia waste as influenced by pre-processing ice storage. Journal Food Science Technology. 54 (13). 2017. DOI: https://doi.org/10.1007/s13197-017-2897-9.
Thiquynhhoa, N, N. P. Diem, N. P. Minh, D. T. Dao. 2015. Enteral tube feeding nutritional protein hydrolysate production under different factors by enzymatic hydrolysis. International Journal of Scientific and Technology Research, 4 (1): 250-256.
Vázquez, J. A., Rodríguez-Amado, I., Sotelo, C. G., Sanz, N., Pérez-Martín, R. I., & Valcárcel, J. (2020). Production, characterization, and bioactivity of fish protein hydrolysates from aquaculture Turbot (Scophthalmus maximus) wastes. Biomolecules. 10 (2). 310. DOI: https://doi.org/10.3390/biom10020310.
Villamil, O., Vaquiro, H., Solanilla, J.F. 2017. Fish viscera protein hydrolysates: Production, potential applications and functional and bioactive properties. Food Chemistry. 224: 160-171. DOI: http://dx.doi.org/10.1016/j.foodchem.2016.12.057.
Wang, K., Siddanakoppalu, P.N., Ahmed, S., Pavase, T.R., Lin, H., Li, Z. 2020. Purification and identification of anti-allergic peptide from Atlantic Salmon (Salmo salar) byproduct enzymatic hydrolysates. Journal of Functionals Foods. 72. DOI: https://doi.org/10.1016/j.jff.2020.104084.
Wang, X. N., Qin, M., Feng, Y. Y., Chen, J. K., and Song, Y. S. (2017). Enzymatic hydrolysis of grass carp fish skin hydrolysates able to promote the proliferation of streptococcus thermopilus. J. Sci. Food Agr. 97(12): 4235–4241. DOI: https://doi.org/10.1002/jsfa.8299.
Witono, Y., Taruna I., Windrati, W.S., Azkiyah, L., Sari, T.N. 2016. ‘Wader’ (Rasbora jacobsoni) Protein hydrolysates: Production, biochemical, and functional properties. 2016. Agricultre and Agricultural Science Proceedia. 9: 482-492. DOI: https://doi.org/10.1016/j.aaspro.2016.02.167.
Yin, S. W., Tang, C. H., Wen, Q. B., Yang, X. Q., & Li, L. (2008). Functional properties and in vitro trypsin digestibility of red kidney bean (Phaseolus vulgaris L.) protein isolate: effect of high-pressure treatment. Food Chemistry, 110(4), 938–945.
Zamora-Sillero, J., Gharsallaoui, A., & Prentice, C. (2018). Peptides from fish by-product protein hydrolysates and its functional properties: An overview. Marine Biotechnology. 20 (2). 118–130. DOI: https://doi.org/10.1007/s10126-018-9799-3.
Zamora-Sillero, J., Ramos, P., Monserrat, J. M., & Prentice, C. (2018). Evaluation of the antioxidant activity in vitro and in hippocampal HT-22 cells system of protein hydrolysates of common carp (Cyprinus carpio) by-product. Journal of Aquatic Food Product Technology, 27, 21–34. DOI: https://doi.org/10.1080/10498850.2017.1390027.
DOI: https://doi.org/10.29103/aa.v8i3.5526
Article Metrics
Abstract Views : 146 timesPDF Downloaded : 11 times
Refbacks
- There are currently no refbacks.
Copyright (c) Acta Aquatica: Aquatic Sciences Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.