Aktivitas imunomodulator ekstrak rumput laut

Erniati Erniati, Riri Ezraneti

Abstract


Abstrak

Rumput laut merupakan sumber daya hayati perairan yang telah diteliti mengandung sejumlah komponen bioaktif untuk meningkatkan kesehatan manusia seperti meningkatkan sistem imun atau bersifat sebagai imunomodulator.Penulisan artikel ini bertujuan untuk menjelaskan lebih jauh tentang sifat imunomodulator rumput laut, diharapkan tulisan ini dapat memberikan informasi ilmiah tentang rumput laut sebagai imunomodulator, sehingga nantinya dapat dikembangkan lagi penelitian ilmiah tentang pemanfaatan rumput laut sebagai imunomodulator.Rumput laut dapat meningkatkan sistem imun spesifik dan non spesifik melalui berbagai sel imun seperti sel makrofag, monosit atau sel limfosit melalui berbagai mekanisme di tingkat seluler.Sifat imunomodulator rumput laut dalam meningkatkan aktivasi makrofag terjadi melalui peningkatan proliferasi makrofag, produksi NO dan sekresi sitokin. Rumput laut juga dapat memodulasi aktivitas makrofag secara in vitro dan in vivo yaitu melalui ekspresi reseptor dan sitokin inflamasi seperti tumor necrosis factor (TNF-α) dan interleukin-1β (IL-1β)., produksi NO dan PGE2 dan ekspresi gen NOS-2 dan COX-2. Sifat imunomodulator rumput laut juga terjadi melalui peningkatan fungsi dan aktivitas limfosit. Ekstrak atau komponen bioaktif rumput laut dapat meningkatkan aktivasi limfosit, diantaranya menstimulasi aktivitas sel limfosit B yaitu melalui peningkatan produksi antibodi imonoglobulin (Ig), meningkatkan proliferasi sel T dan produksi subset limfosit T seperti CD4 dan CD8. Ekstrak rumput laut juga telah diteliti  mempengaruhi ekspresi mRNA untuk meningkatkan produksi  sitokin oleh Th1 seperti TNF-α dan IFN-γ, dan menurunkan sitokin yang diproduksi oleh Th2 seperti  IL-4 dan IL-10 serta  meningkatkan produksi IL-2 pada sel limfosit T.

Kata kunci: rumput laut; komponen bioaktif; imunomodulatori; makrofag

Abstract

Seaweed is one of the marine biological resources that is known to contain bioactive compounds to improve human health, such as enhancing the immune system or being as an immunomodulator. This study aims to explain more about the nature of seaweed immunomodulators so that scientific research could be developed in the use of seaweed as an immunomodulator later. Seaweed could increase specific and nonspecific immune systems by involving various immune cells such as macrophage cells, monocytes, or lymphocyte cells through various mechanisms at the cellular level. The role of Immunomodulatory properties of seaweed in increasing macrophage activation occurs through increasing macrophage proliferation, NO production, and cytokine secretion. Seaweed would modulate macrophage activity in vitro and in vivo through the expression of inflammatory receptors and cytokines such as tumor necrosis factor (TNF-α) and interleukin-1β (IL-1β), NO and PGE2 production and NOS-gene expression 2 and COX-2. Seaweed immunomodulatory activity would also occur through increasing function and activity of lymphocytes that stimulate the activity of B lymphocyte cells, production of antibody immunoglobulin (Ig), T cell proliferation and production of T lymphocyte subsets such as CD4 and CD8. Seaweed extracts also have been investigated to be able to affect mRNA expression to increase cytokine production by Th1 such as TNF-α and IFN-γ, decrease cytokines produced by Th2 such as IL-4 and IL-10 and increase IL-2 production in T lymphocytes.

Keywords: seaweed; bioactive components; immunomodulatory; macrophage

 



Full Text:

PDF

References


Ahn, G., Hwang, I., Park, E., Kim, J., Jeon, Y. J., Lee, J., Park, J. W, Jee, Y., 2008. Immunomodulatory effects of an enzymatic extract from Ecklonia cava on murine splenocytes. Marine Biotechnology. 10(3):278-289. doi: 10.1007/s10126-007-9062-9.

Ahn, G., Park, E., Lee, W. W., Hyun, J. W., Lee, K. W., Shin, T., Jeon, Y. J., Jee, Y., 2011. Enzymatic extract from Ecklonia cava induces the activation of lymphocytes by IL-2 production through the classical NF-κB pathway. Marine Biotechnology. 13(1): 66-73.

Ahn, G., Bing, S. J., Kang, S. M., Lee, W. W., Lee, S. H., Matsuda, H., Tanaka, A., Cho, I. H., Jeon, Y. J., Jee, Y., 2013. The JNK/NFκB pathway is required to activate murine lymphocytes induced by a sulfated polysaccharide from Ecklonia cava. Biochimica et Biophysica Acta (BBA)-General Subjects. 1830(3): 2820-2829.

Alamgir, M. Uddin, S. J., 2010. Recent advances on the ethnomedicinal plants as immunomodulatory agents. Ethnomedicine: A Source of Complementary Therapeutics: 227-244.

Aldi, Y., Ogiana, N., Handayani, D., 2013. Uji imunomodulator beberapa subfraksi ekstrak etil asetat Meniran (phyllanthus niruri [l]) pada mencit putih jantan dengan Metoda carbon clearance. Prosiding Seminar Nasional Perkembangan Terkini Sains Farmasi dan Klinik III. Fakultas Farmasi Universitas Andalas Padang.

Anderson, W. L., 1999. Introduction to the Immune System: Innate and Acquired Immunity. Dalam: Immunology. Fence Creek Publishing. Madison: 7-22.

Baeke, F., Korf, H., Overbergh, L., 2010. Human T lymphocytesare direct targets of 1,25-dihydroxyvitamin D3 in the immunesystem. J. Steroid Biochem and Molecular Biol. 121(2): 221–227. doi:10.1016/j.jsbmb.2010.03.037.

Bakar, N. A., Anyanji, V. U., Mustapha, N. M., Lim, S. L., Mohamed, S., 2015. Seaweed (Eucheuma cottonii) reduced inflammation, mucin synthesis, eosinophil infiltration and MMP-9 expressions in asthma-induced rats compared to Loratadine. Journal of Functional Foods.19:710-722.

Barahona, T., Encinas, M. V., Imarai, M., Mansilla, A., Matsuhiro, B., Torres, R., Valenzuela, B., 2014. Bioactive polysaccharides from marine algae. J. Bioact Carbohydr and Diettary Fibre. 4: 125 – 138. doi:org/10.1016/j.bcdf.2014.09.002.

Baratawidjaja, K. G., Rengganis, I., 2010. Imunologi Dasar. Jakarta (ID): Fakultas Kedokteran Universitas Indonesia.

Barrett, A. J., Rezvani, K., Solomon, S., Dickinson, A. M., 2003. New developments in allotrans¬plant immunology. Hematology Am Soc Hematol Educ Program: 50–357.

Benny, K. H., Vanitha, J., 2004. Immunomodulatory and antimicrobial effects of some traditional chinese medicinal herbs: A Review. Current Medicinal Chemistry. 11: 1423-1430.

Besung, I. N., Astawa, N. M., Suata, K., Suwiti, N. K., 2016. Hubungan antara aktivasi makrofag dengan kadar interleukin-6 dan antibodi terhadap salmonella typhi pada mencit (Relationship between the macrophage activity with interleukin-6 levels and titers of antibodies against Salmonella typhi. Jurnal Kedokteran Hewan. 2016. 10(1): 1-4.

Block, K. I., Mead, M. N., 2003. Immune system effects of Echinaceae, Ginseng and Astragakus. A Review. Integrative Cancer Therapies. 2(3): 247-267.

Boise, L. H., Thomson, C. B., 1998. Hierarchical control of lymphocytes survival. Science. 275: 67-68.

Cao, R. A., Lee, Y., You, S., 2014. Water soluble sulfated-fucans with immune-enhancing properties from Ecklonia cava.International journal of biological macromolecules. 67:303-11. doi.org/10.1016/j.ijbiomac.2014.03.019.

Chan, K. F., Siegel, M. R., Lenardo, J. M., 2000. Signaling by the TNF receptor superfamily and T cell homeostasis. Immunity.13: 419–422.

Chanana, V., Ray, D. B., Rishi, P., 2007. Reactive nitrogen intermediates and monokines induce caspase-3 mediated macrophage apoptosis by anaerobically stressed Salmonella typhi. Clin. Exp. Immunol. 150(2): 368-374.

Chan, K. F., Siegel, M. R., Lenardo, J. M., 2000. Signaling by the TNF receptor superfamily and T cell homeostasis. Immunity .13: 419–422.

Cho M., Lee, D.J., Kim, J.K., You, S., 2014. Molecular characterization and immunomodulatory activity of sulfated fucans from Agarum cribrosum.Carbohydrate polymers. 113: 507-14.

Erniati., Zakaria, F. R., Prangdimurti, E., Adawiyah, D. R., Priosoeryanto, B. P., and N. Huda., 2018. “Chemical evaluation of nori-like product (geluring) made from the mixture of Gelidium sp. andUlva lactuca seaweeds” Curent Research Nutrition and Food Science; 6(3), 664-671.

Fang, Q., Wang, J. F., Zha, X. Q., Cui, S. H., Cao, L., Luo, J. P., 2015. Immunomodulatory activity on macrophage of a purified polysaccharide extracted from Laminaria japonica. Carbohydrate polymers. 134:66-73.

Gamal-Eldeen, A. M., Amer, H., Helmy, W. A., Talaat, R. M., Ragab, H., 2007. Chemically-modified polysaccharide extract derived from Leucaena leucocephala alters Raw 264.7 murine macrophage functions. Intern immunopharmacology. 7: 871-878.

Golks, A., Tran, T. T., Goetschy, J. F., Guerini, D., 2007. Requirement for Olinked N-acetyl glucosaminyltransferase in lymphocytes activation. EMBO J. 26: 4368–4379.

Granucci, F., Zanoni, I., Feau, S., Ricciardi‐Castagnoli, P., 2003. Dendritic cell regulation of immune responses: a new role for interleukin 2 at the intersection of innate and adaptive immunity. The EMBO journal. 22(11): 2546-2551.

Heo, S. J., Yoon, W. J., Kim, K. N., Ahn, G. N., Kang, S. M., Kang, D. H., Affan, A., Oh, C., Jung, W. K., Jeon, Y. J., 2010. Evaluation of anti-inflammatory effect of fucoxanthinisolated from brown algae in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food Chem Toxicol. 48: 2045–2051. doi:10.1016/j.fct.2010.05.003

Hikmah, N., Dewanti, I. D. A. R., 2011. Peran toll like receptors (tlrs) pada innate immunity. Stomatognatic. 8 (1): 21-26.

Hosokawa, M., Miyashita, T., Nishikawa, S., Tsukui, T., Beppu, F., Okada, T., Miyashita, K., 2010. Fucoxanthin regulates adipocytokine mRNA expression in white adipose tissue of diabetic/obeseKK-Ay mice. Arch. Biochem. Biophys.504: 17–25. doi:10.1016/j.abb.2010.05.031.

Ishimaru, N., Kishimoto, H., Hayashi, Y., Sprent, J., 2006. Regulation of naive T cell function by the NF-kappa B2 pathway. Nat Immunol. 7: 763–772.

Kabelitz, D., 2007. Expression and function of Toll-like receptors in T lymphocytes.Current opinion in immunology. 2007 Feb 28; 19(1): 39-45. doi: 10.1016/j.coi.2006.11.007.

Kang, M. C., Wijesinghe, W. A. J. P., Lee, S. H., Kang, S. M., Ko, S. C., Yang, X., Kang, N., Jeon, B. T., Kim, J., Lee, D. H., Jeon, Y. J., 2013. Dieckol isolated from brown seaweed Ecklonia cava attenuates type II diabetesin db/db mouse model. Food and Chem Toxicol. 53:294–298. doi:10.1016/j.fct.2012.12.012.

Kim, J. K., Cho, M. L., Karnjanapratum, S., Shin, I. S., You, S. G., 2011. In vitro and in vivo immunomodulatory activity of sulfated polysaccharides from Enteromorpha prolifera. Inter J. of Biol Macromolecules. 49: 1051– 1058. doi:10.1016 / j.ijbiomac.2011.08.032.

Kim, M. M., Rajapakse, N., Kim, S. K., 2010. Anti-inflammatory effect of Ishige okamurae ethanolicextract via inhibition of NF-kappaB transcription factor in RAW 264.7 cells. Phytother.23: 628–634. doi: 10.1002/ptr.2674.

Koolman, J., dan Rohm, K. H., 2001. Biokimia: Atlas Berwarna dan Teks. Alih Bahasa Sadikin M. Jakarta: Fakultas Kedokteran Universitas Indonesia.

Leiro, J. M., Castro, R., Arranz, J. A., Lamas, J., 2007. Immunomodulating activities of acidic sulphated polysaccharides obtained from the seaweed Ulva rigida C. Agardh. International Immunopharmacology. 7(7): 879-888.

Liew, F. Y., 1995. Interactions between cytokines and nitric oxide. Advances in neuroimmunology. 5(2): 201-209.

Liu, J. N., Yoshida, Y., Wang, M. Q., Okai, Y., Yamashita, U., 1997. B cell stimulating activity of seaweed extracts. International journal of immunopharmacology. 19(3): 135-142.

Liu, J., Willfor, S., Xu, C., 2015. A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications. Bioactv Carbohydr and Diettary Fibre. 5:31 – 61. doi:org/10.1016/j.bcdf.2014.12.001.

Li, X. C., Kloc, M., Ghobrial, R. M., 2013. Memory T cells in transplantation—progress and chal¬lenges. Curr Opin Organ Transplant. 18:387–392.

Mardiah., Zakaria, F. R., Prangdimurti, E., Damanik, R., 2015. Anti-inflammatory of purple roselle extract in diabetic rats induced by streptozotocin. Procedia Food Science. 3: 182 – 189. doi: 10.1016/j.profoo.2015.01.020.

Mora, A. L., Corn, R. A., Stanic, A. K., Goenka, S., Aronica, M., Stanley, S., Ballard, D. W., Joyce, S., Boothby, M., 2003. Antiapoptotic function of NF-kappa B in T lymphocytes is influenced by their differentiation status: roles of Fas, c-FLIP, and Bcl-xL. Cell Death Differ.

Nagarathna, P. K. M., Reena, K., Sriram, R., Wesley, J., 2013. Review on immunomodulation and immunomodulatory activity of some herbal plants. Int. J. Pharm. Sci. Rev. Res. 22(1): 223-230.

Patil, U. S., Jaydeokar, A. V., Bandawane, D. D., 2012. Immunomodulators: A pharmacological review. Int J Pharm Pharm Sci. 4(Suppl 1): 30-36.

Paul, W. E., Selder, R. A., 1998. Lymphocyte responses and cytokine. Cell. 78: 241-244.

Peasura, N., Laohakunjit, N., Kerdchoechuen, O., Vongsawasdi, P., Chao, L. K., 2016. Assessment of biochemical and immunomodulatory activity of sulphated polysaccharides from Ulva intestinalis. International journal of biological macromolecules. 91: 269-277.

Pérez-Recalde, M., Matulewicz, M. C., Pujo, l. C. A., Carlucci, M. J., 2014. In vitro and in vivo immunomodulatory activity of sulfated polysaccharides from red seaweed Nemalion helminthoides. International journal of biological macromolecules. 63: 38-42.

Prasad, A. S., Bao, B., Beck, F. W., Sarkar, F. H., 2002. Zinc enhances the expression of interleukin-2 and interleukin-2 receptors in HUT-78 cells by way of NF-κB activation. J Lab Clin Med. 140: 272–289.

Petry, V., Gaspari, A., 2006. Toll-like receptors and dermatology.International Journal of Dermatology. 8:558-570.

Rankin, J. A., 2004. Biological mediators of acute inflammation. AACN Clinical Issues. 15(1): 3–17.

Redecke, V., Häcker, H., Datta, S. K., Fermin, A., Pitha, P. M., Broide, D. H., Raz, E., 2004. Cutting edge: activation of Toll-like receptor 2 induces a Th2 immune response and promotes experimental asthma. The Journal of Immunology. 172(5):2739-2743.

Roitt., 2011. Essential Immunology.12th edition. Oxford: Blackwell ScienceLimited.

Sacca, R., Cuff, C. A., Ruddle, N. H., 1997. Mediators of inflammation. Curr Opin Immunol. 9:851–857.

Schepetkin, I. A., Quinn, M. T., 2006. Botanicalpolysaccharides: Macrophage immunomodulation and therapeuticpotentil. International Immunopharmacology. 6(3): 317–333. doi:10.1016/j.intimp.2005.10.005.

Shan, B. E., Yoshida, Y., Kuroda, E., Yamashita, U., 1999. Brief Communication Immunomodulating activity of seaweed extract on human lymphocytes in vitro. International journal of immunopharmacology. 21(1): 59-70.

Shao, B. M., Xu, W., Dai, H., Tu, P., Li, Z., Gao, A., 2004. Study on the immune receptors for polysaccharides from the roots of Astragalus membranaceus, a Chinese medicinal herb. Biochem.Biophys. Res. Commun. 320(4): 1103–1111.

Shin, J., Yun, Y., Pyo, S., 2002.Immunostimulanting effect of acidic polyssharides of Panax ginseng on macrophage function. Immunopharmacology and Immunotoxicology. 24: 469-482.

Shizuo, A., 2000. A Toll-Like Receptor Recognized Bacteri. Nature: vol. 408:740-745. Research Institute for Microbial Disesase, Osaka University; Erato of Japan. Shipkova M, Wieland E. 2012. Surface markers of lymphocyte activation and markers of cell proliferation. Clinica chimica acta. 413(17): 1338-1349.

Shu, M. H., Appleton, D., Zandi, K., AbuBakar, S., 2013. Anti-inflammatory, gastroprotective and anti-ulcerogenic effects of red algae Gracilaria changii (Gracilariales, Rhodophyta) extract. BMC Complementary and Alternative Medicine. 13(1): 61. doi:10.1186/1472-6882-13-61.

Soeroso, A., 2007. Sitokin.Jurnal Oftalmogi Indonesia. 5: 171-180.

Subaryono, S., Perangiangin, R., Suhartono, M. T., Zakaria, F. R., 2017. Imunomodulator activity of alginate oligosaccharides from alginate Sargassum crassifolium. JPHPI. 20(1): 63-73.

Tabarsa, M., Han, J. H., Kim, C. Y., You, S. G., 2012. Molecular characteristics and immunomodulatory activities of water-soluble sulfated polysaccharides from Ulva pertusa. Journal of medicinal food. 15(2):135-144.

Takahashi, A., Watanabe, T., Mondal, A., 2014. Mechanism basedinhibition of cancer metastasis with (-)-epigallocatechingallate, Biochem and Biophysical Research Communications. 443(1): 1–6.

Tjandrawinata, R. R., Maat, S., Noviarny, D., 2005. Effect of standardized Phyllanthus niruri extract on changes in immunologic para-meters: correlation between pre-clinical and clinical studies. Medika XXXI (6): 367-371.

Tsuji, R. F., Hoshino, K., Noro, Y., Tsuji, N. M., Kurokawa, T., Masuda, T., 2003. Suppression of allergic reaction by lambda-carrageenan: toll-like receptor 4/MyD88-dependent and-independent modulation of immunity. Clin Exp Allergy; 33: 249–258.

Ulmer, A. J., Flad, H. D., Rietschel, T., Mattern, T., 2000. Induction of proliferation and cytokine production in human T lymphocytes by lipopolysaccharide (LPS). Toxicology. 152(1): 37-45.

Usmiati, S., 2017. Modifikasi struktur, ukuran dan bentuk fisikpektin bermetoksil rendah serta pengaruhnya terhadap ketahanan probiotik dan aktivitas sel makrofag RAW264. 7 secara in vitro. [Disertasi]. Bogor. (ID): Institut Pertanian Bogor.

Wang, M. L., Hou, Y. Y., Chiu, Y. S., Chen, Y. H., 2013. Immunomodulatory activities of Gelidium amansii gel extracts on murine RAW 264.7 macrophages. journal of food and drug analysis. 21(4): 397-403.

Wiedosari, E., 2013. Peranan Imunomodulator alami (Aloe vera) dalam sistem imunitas seluler dan humoral. Wartazoa. 17 (4): 165-171.

Wieland, E., 2015. Markers of lymphocyte activation and proliferation. Personalized Immunosuppression in Transplantation, 1st Edition. Role of Biomarker Monitoring and Therapeutic Drug Monitoring. Atlanta, GA: Elesevier: 227-249.

Yamamoto, Y., Gaynor, R. B., 2001. Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inflammation and cancer. J Clin Invest 107: 135–142.

Yan, Z. F., Liu, N. X., Mao, X. X., Li, Y., Li, C. T., 2014. Activation effects of polysaccharides of Flammulina velutipesmycorrhizae on the T lymphocyte immune function. Journal of Immunology Research1: 1-7.

Yoo, M. S., Shin, J. S., Choi, H. E., Cho, Y. W., Bang, M. H., Baek, N. I., Lee, K. T., 2012. Fucosterol isolated from Undaria pinnatifida inhibits lipopolysaccharide-induced production of nitric oxide and pro-inflammatory cytokines via the inactivation of nuclear factor-κB and p38 mitogen-activated protein kinase in RAW264. 7 macrophages. Food chemistry. 135(3): 967-975.

Zha, X. Q., Lu, C. Q., Cui, S. H., Pan, L. H., Zhang, H. L., Wang, J. H., Luo, J. P., 2015. Structural identification and immunostimulating activity of a Laminaria japonica polysaccharide. International journal of biological macromolecules. 78:429-38.

Zhang, X., Qi, C., Guo, Y., Zhou, W., Zhang, Y., 2016. Toll-like receptor 4-related immunostimulatory polysaccharides: Primary structure, activity relationships, and possible interaction models. Carbohydrate polymers. 149:186-206.




DOI: https://doi.org/10.29103/aa.v7i2.2463

Article Metrics

 Abstract Views : 3867 times
 PDF Downloaded : 18 times

Refbacks

  • There are currently no refbacks.



Copyright (c) Acta Aquatica: Aquatic Sciences Journal   

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.