Advances in understanding physical and biological controls on eggs and larval distribution in Pacific fisheries: A review
Abstract
The early stages of fish, comprising eggs and larvae, are exceptionally fragile and sensitive to environmental dynamics and climate change. Pacific Ocean (PO) currents play an important role in shaping the distribution of marine organisms, influencing global climate patterns, heat distribution, coastal temperatures, and nutrient redistribution. These currents reveal significant changes within the climate system. Their variability across different timescales can be attributed to the complex interplay of physical forces. These currents are subjected to diverse anthropogenic factors, exerting detrimental effects on the dispersal of fish larvae. Furthermore, climate change variables, including alterations in tropical PO temperature associated with the ENSO cycle, Atlantic Nino modes influencing equatorial Atlantic temperature, changes in ocean salinity, polar ice cap melting, increasing greenhouse gases, marine heatwaves, and fluctuations in subsurface flows, directly impact the distribution, abundance, and species composition of early life stages. Major Pacific fisheries, such as those targeting Pacific sardines, saury, and anchovies, undergo population booms and declines due to significant alterations in the current dynamics of currents and fronts within the PO. The anticipated intensification of the ENSO cycle, characterized by more frequent and severe El Niño (warm) and La Niña (cold) events as a result of climate change, is expected to significantly impact the early developmental stages of important commercial fish stocks regularly. This review synthesizes the current understanding of the physical and biological parameters driving changes in ocean currents and their implications for early fish dispersion, emphasizing the critical need for research in this area to inform global conservation efforts, fisheries management, and food security.
Keywords
Full Text:
PDFReferences
Abolfazli, E., Liang, J. H., Fan, Y., Chen, Q. J., Walker, N. D., & Liu, J. (2020). Surface gravity waves and their role in ocean-atmosphere coupling in the Gulf of Mexico. Journal of Geophysical Research: Oceans, 125(7), e2018JC014820. https://doi.org/10.1029/2018JC014820.
Anderson, C. I., & Rodhouse, P. G. (2001). Life cycles, oceanography and variability: ommastrephid squid in variable oceanographic environments. Fisheries Research, 54(1), 133-143. https://doi.org/10.1016/S0165-7836(01)00378-2.
Anderson, T., & Lucas, M. (2009). Upwelling ecosystems. Ecosystem Ecology, 450. https://doi.org/10.1016/B978-008045405-4.00363-3.
Arellano, B., & Rivas, D. (2019). Coastal upwelling will intensify along the Baja California coast under climate change by mid-21st century: Insights from a GCM-nested physical-NPZD coupled numerical ocean model. Journal of Marine Systems, 199, 103207. https://doi.org/10.1016/j.jmarsys.2019.103207.
Auad, G., Roemmich, D., & Gilson, J. (2011). The California Current System in relation to the northeast Pacific ocean circulation. Progress in Oceanography, 91(4), 576-592. https://doi.org/10.1016/j.pocean.2011.09.004.
Bakun, A. (2006). Fronts and eddies as key structures in the habitat of marine fish larvae: opportunity, adaptive response and competitive advantage. Scientia Marina, 70(S2), 105-122. https://doi.org/10.3989/scimar.2006.70s2105.
Bakun, A., Black, B. A., Bograd, S. J., Garcia-Reyes, M., Miller, A. J., Rykaczewski, R. R., & Sydeman, W. J. (2015). Anticipated effects of climate change on coastal upwelling ecosystems. Current Climate Change Reports, 1, 85-93. https://doi.org/10.1007/s40641-015-0008-4.
Barange, M., Bahri, T., Beveridge, M., Cochrane, K. L., Funge-Smith, S., & Poulain, F. (2018a). Impacts of climate change on fisheries and aquaculture. United Nations’ Food and Agriculture Organization, 12(4), 628-635.
Barange, M., Bahri, T., Beveridge, M. C., Cochrane, K. L., Funge-Smith, S., & Poulain, F. (2018b). Impacts of climate change on fisheries and aquaculture. United Nations’ Food and Agriculture Organization, 12(4), 628-635.
Barnston, A. G., Tippett, M. K., L'Heureux, M. L., Li, S., & DeWitt, D. G. (2012). Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing?. Bulletin of the American Meteorological Society, 93(5), 631-651. https://doi.org/10.1175/BAMS-D-11-00111.1.
Bashevkin, S. M., Dibble, C. D., Dunn, R. P., Hollarsmith, J. A., Ng, G., Satterthwaite, E. V., & Morgan, S. G. (2020). Larval dispersal in a changing ocean with an emphasis on upwelling regions. Ecosphere, 11(1), e03015. https://doi.org/10.1002/ecs2.3015.
Basu, B. (2019). Some numerical investigations into a nonlinear three-dimensional model of the Pacific equatorial ocean flows. Deep Sea Research Part II: Topical Studies in Oceanography, 160, 7-15. https://doi.org/10.1016/j.dsr2.2018.11.013.
Bernal, M., Stratoudakis, Y., Coombs, S., Angélico, M. M., De Lanzós, A. L., Porteiro, C., Sagarminaga, Y., Santos, M., Uriarte, A., & Cunha, E. (2007). Sardine spawning off the European Atlantic coast: Characterization of and spatio-temporal variability in spawning habitat. Progress in Oceanography, 74(2-3), 210-227. https://doi.org/10.1016/j.pocean.2007.04.018.
Bertrand, A., Lengaigne, M., Takahashi, K., Avadi, A., Poulain, F., & Harrod, C. (2020). El Niño Southern Oscillation (ENSO) effects on fisheries and aquaculture (Vol. 660). Food & Agriculture Organization.
Bond, N. A., Cronin, M. F., Freeland, H., & Mantua, N. (2015). Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophysical Research Letters, 42(9), 3414-3420. https://doi.org/10.1002/2015GL063306.
Brodeur, R. D., Auth, T. D., & Phillips, A. J. (2019). Major shifts in pelagic micronekton and macrozooplankton community structure in an upwelling ecosystem related to an unprecedented marine heatwave. Frontiers in Marine Science, 6, 212. https://doi.org/10.3389/fmars.2019.00212
Brown, M. V., Ostrowski, M., Messer, L. F., Bramucci, A., van de Kamp, J., Smith, M. C., Bissett, A., Seymour, J., Hobday, A. J., & Bodrossy, L. (2024). A marine heatwave drives significant shifts in pelagic microbiology. Communications Biology, 7(1), 125. https://doi.org/10.1038/s42003-023-05702-4.
Cai, W., Wang, G., Santoso, A., McPhaden, M. J., Wu, L., Jin, F.-F., Timmermann, A., Collins, M., Vecchi, G., & Lengaigne, M. (2015). Increased frequency of extreme La Niña events under greenhouse warming. Nature Climate Change, 5(2), 132-137. https://doi.org/10.1038/nclimate2492.
Cataldo, D., Leites, V., Bordet, F., & Paolucci, E. (2022). Effects of El Niño-Southern Oscillation (ENSO) on the reproduction of migratory fishes in a large South American reservoir. Hydrobiologia, 849(15), 3259-3274. https://doi.org/10.1007/s10750-022-04941-6.
Cavole, L. M., Demko, A. M., Diner, R. E., Giddings, A., Koester, I., Pagniello, C. M., Paulsen, M.-L., Ramirez-Valdez, A., Schwenck, S. M., & Yen, N. K. (2016). Biological impacts of the 2013–2015 warm-water anomaly in the Northeast Pacific: winners, losers, and the future. Oceanography, 29(2), 273-285. https://doi.org/10.5670/oceanog.2016.32.
Chenillat, F., Rivière, P., Capet, X., Lorenzo, E. D., & Blanke, B. (2012). North Pacific Gyre Oscillation Modulates Seasonal Timing and Ecosystem Functioning in the California Current Upwelling System. Geophysical Research Letters, 39(1). https://doi.org/10.1029/2011GL049966.
Cheung, W. W. L., & Frölicher, T. L. (2020). Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific. Scientific Reports, 10(1), 6678. https://doi.org/10.1038/s41598-020-63650-z.
Collins, M. (2005). El Niño-or La Niña-like climate change? Climate Dynamics, 24, 89-104. https://doi.org/10.1007/s00382-004-0478-x.
Cummins, P. F., & Freeland, H. J. (2007). Variability of the North Pacific Current and its bifurcation. Progress in Oceanography, 75(2), 253-265. https://doi.org/10.1016/j.pocean.2007.08.006.
Deser, C., Alexander, M. A., & Timlin, M. S. (1999). Evidence for a wind-driven intensification of the Kuroshio Current Extension from the 1970s to the 1980s. Journal of Climate, 12(6), 1697-1706. https://doi.org/10.1175/1520-0442(1999)012<1697:EFAWDI>2.0.CO;2.
Dunxin, H., & Maochang, C. (1991). The western boundary current of the Pacific and its role in the climate. Chinese Journal of Oceanology and Limnology, 9, 1-14. https://doi.org/10.1007/BF02849784.
Espinoza-Morriberón, D., Echevin, V., Colas, F., Tam, J., Ledesma, J., Vásquez, L., & Graco, M. (2017). Impacts of E l N iño events on the P eruvian upwelling system productivity. Journal of Geophysical Research: Oceans, 122(7), 5423-5444. https://doi.org/10.1002/2016JC012439.
Fahad, A. A., & Burls, N. J. (2022). The influence of direct radiative forcing versus indirect sea surface temperature warming on southern hemisphere subtropical anticyclones under global warming. Climate Dynamics, 58(9-10), 2333-2350. https://doi.org/10.1007/s00382-020-05290-7.
Fahad, A. a., Burls, N. J., & Strasberg, Z. (2020). How will southern hemisphere subtropical anticyclones respond to global warming? Mechanisms and seasonality in CMIP5 and CMIP6 model projections. Climate Dynamics, 55, 703-718. https://doi.org/10.1016/j.pocean.2022.102858.
Farach-Espinoza, E. B., López-Martínez, J., García-Morales, R., Nevárez-Martínez, M. O., Ortega-García, S., & Lluch-Cota, D. B. (2022). Coupling oceanic mesoscale events with catches of the Pacific sardine (Sardinops sagax) in the Gulf of California. Progress in Oceanography, 206, 102858. https://doi.org/10.1016/j.pocean.2022.102858.
Frederiksen, M., Edwards, M., Richardson, A. J., Halliday, N. C., & Wanless, S. (2006). From plankton to top predators: bottom-up control of a marine food web across four trophic levels. Journal of Animal Ecology, 75(6), 1259-1268. https://doi.org/10.1111/j.1365-2656.2006.01148.x.
Freeland, H. J. (2006). What proportion of the North Pacific Current finds its way into the Gulf of Alaska? Atmosphere-Ocean, 44(4), 321-330. https://doi.org/10.3137/ao.440401.
Fréon, P., Barange, M., & Arístegui, J. (2009). Eastern boundary upwelling ecosystems: integrative and comparative approaches. In (Vol. 83, pp. 1-14): Elsevier. https://doi.org/10.1016/j.pocean.2009.08.001.
Funes-Rodríguez, R., Zárate-Villafranco, A., Hinojosa-Medina, A., González-Armas, R., & Hernández-Trujillo, S. (2011). Mesopelagic fish larval assemblages during El Niño-southern oscillation (1997–2001) in the southern part of the California Current. Fisheries Oceanography, 20(4), 329-346. https://doi.org/10.1111/j.1365-2419.2011.00587.x.
Galindo-Cortes, G., De Anda-Montañez, J. A., Arreguín-Sánchez, F., Salas, S., & Balart, E. F. (2010). How do environmental factors affect the stock–recruitment relationship? The case of the Pacific sardine (Sardinops sagax) of the northeastern Pacific Ocean. Fisheries Research, 102(1-2), 173-183. https://doi.org/10.1016/j.fishres.2009.11.010.
Gaspar, P., Georges, J. Y., Lenoble, A., Ferraroli, S., Fossette, S., & Maho, Y. L. (2006). Marine animal behaviour: Neglecting ocean currents can lead us up the wrong track. Proceedings of the Royal Society B Biological Sciences, 273(1602), 2697-2702. https://doi.org/10.1098/rspb.2006.3623.
Glynn, P. W., Mones, A. B., Podestá, G. P., Colbert, A., & Colgan, M. W. (2017). El Niño-Southern Oscillation: effects on Eastern Pacific coral reefs and associated biota. Coral Reefs of the Eastern Tropical Pacific: Persistence and loss in a dynamic environment, 251-290. https://doi.org/10.1007/978-94-017-7499-4_8.
Godfrey, J., Johnson, G., McPhaden, M., Reverdin, G., & Wijffels, S. E. (2001). The tropical ocean circulation. In International Geophysics (Vol. 77, pp. 215-246). Elsevier. https://doi.org/10.1016/S0074-6142(01)80121-2.
Gouriou, Y., & Toole, J. (1993). Mean circulation of the upper layers of the western equatorial Pacific Ocean. Journal of Geophysical Research: Oceans, 98(C12), 22495-22520. https://doi.org/10.1029/93JC02513.
Grados, C., Chaigneau, A., Echevin, V., & Dominguez, N. (2018). Upper ocean hydrology of the Northern Humboldt Current System at seasonal, interannual and interdecadal scales. Progress in Oceanography, 165, 123-144. https://doi.org/10.1016/j.pocean.2018.05.005.
Grove, R., & Adamson, G. (2018). El Niño in world history. Springer. https://doi.org/10.1057/978-1-137-45740-0.
Grove, R. H. (1998). Global impact of the 1789-93 El Niño. Nature, 393(6683), 318-319. https://doi.org/10.1038/30636.
Guo, X., Gao, Y., Zhang, S., Wu, L., Chang, P., Cai, W., Zscheischler, J., Leung, L. R., Small, J., Danabasoglu, G., Thompson, L., & Gao, H. (2022). Threat by marine heatwaves to adaptive large marine ecosystems in an eddy-resolving model. Nature Climate Change, 12(2), 179-186. https://doi.org/10.1038/s41558-021-01266-5.
Hanich, Q., Wabnitz, C. C. C., Ota, Y., Amos, M., Donato-Hunt, C., & Hunt, A. (2018). Small-scale fisheries under climate change in the Pacific Islands region. Marine Policy, 88, 279-284. https://doi.org/10.1016/j.marpol.2017.11.011.
Hays, G. C. (2017). Ocean currents and marine life. Current Biology, 27(11), R470-R473. https://doi.org/10.1016/j.cub.2017.01.044.
Heath, M. R., Neat, F. C., Pinnegar, J. K., Reid, D. G., Sims, D. W., & Wright, P. J. (2012). Review of climate change impacts on marine fish and shellfish around the UK and Ireland. Aquatic Conservation: Marine and Freshwater Ecosystems, 22(3), 337-367. https://doi.org/10.1002/aqc.2244.
Hickey, B. M., Royer, T. C., & Amos, C. M. (2001). California and Alaska currents. In J. H. Steele (Ed.), Encyclopedia of Ocean Sciences (pp. 455-466). Academic Press. https://doi.org/10.1016/B978-012374473-9.00352-0.
Hitt, N. T., Sinclair, D. J., Neil, H. L., Fallon, S. J., Komugabe-Dixson, A., Fernandez, D., Sutton, P. J., & Hellstrom, J. C. (2022). Natural cycles in south Pacific gyre strength and the southern annular mode. Scientific Reports, 12(1), 18090. https://doi.org/10.1038/s41598-022-22184-2.
Holbrook, N. J., Hernaman, V., Koshiba, S., Lako, J., Kajtar, J. B., Amosa, P., & Singh, A. (2022). Impacts of marine heatwaves on tropical western and central Pacific Island nations and their communities. Global and Planetary Change, 208, 103680. https://doi.org/https://doi.org/10.1016/j.gloplacha.2021.103680.
Holsman, K., Hollowed, A., Ito, S., Bograd, S., Hazen, E., King, J., Mueter, F., & Perry, R. I. (2019). Climate change impacts, vulnerabilities and adaptations: North Pacific and Pacific Arctic marine fisheries. Impacts of climate change on fisheries and aquaculture, 113.
Hu, D., Wu, L., Cai, W., Gupta, A. S., Ganachaud, A., Qiu, B., Gordon, A. L., Lin, X., Chen, Z., Hu, S., Wang, G., Wang, Q., Sprintall, J., Qu, T., Kashino, Y., Wang, F., & Kessler, W. S. (2015). Pacific western boundary currents and their roles in climate. Nature, 522(7556), 299-308. https://doi.org/10.1038/nature14504.
Hurlburt, H. E., Wallcraft, A. J., Schmitz Jr, W. J., Hogan, P. J., & Metzger, E. J. (1996). Dynamics of the Kuroshio/Oyashio current system using eddy-resolving models of the North Pacific Ocean. Journal of Geophysical Research: Oceans, 101(C1), 941-976. https://doi.org/10.1029/95JC01674.
Ings, D., Gregory, R., & Schneider, D. (2008). Episodic downwelling predicts recruitment of Atlantic cod, Greenland cod and white hake to Newfoundland coastal waters. Journal of Marine Research, 66(4), 529-561. https://doi.org/10.1357/002224008787157476.
Jacox, M. G., Alexander, M. A., Bograd, S. J., & Scott, J. D. (2020). Thermal displacement by marine heatwaves. Nature, 584(7819), 82-86. https://doi.org/10.1038/s41586-020-2534-z.
John, H.-C., Zelck, C., & Erasmi, W. (2000). Poleward transport of equatorial fish larvae in the Atlantic Eastern boundary current system. Archive of Fishery and Marine Research, 48(1), 61-88.
Johnson, G. C., McPhaden, M. J., Rowe, G. D., & McTaggart, K. E. (2000). Upper equatorial Pacific Ocean current and salinity variability during the 1996-1998 El Nino-La Nina cycle. Journal of Geophysical Research: Oceans, 105(C1), 1037-1053. https://doi.org/10.1029/1999JC900280.
Jones, T., Parrish, J. K., Peterson, W. T., Bjorkstedt, E. P., Bond, N. A., Ballance, L. T., Bowes, V., Hipfner, J. M., Burgess, H. K., & Dolliver, J. E. (2018). Massive mortality of a planktivorous seabird in response to a marine heatwave. Geophysical Research Letters, 45(7), 3193-3202. https://doi.org/10.1002/2017GL076164.
Kämpf, J., & Chapman, P. (2016). Upwelling systems of the world. Springer. https://doi.org/10.1007/978-3-319-42524-5.
Kämpf, J., Chapman, P., Kämpf, J., & Chapman, P. (2016). The functioning of coastal upwelling systems. Upwelling systems of the world: A Scientific Journey to the Most Productive Marine Ecosystems, 31-65. https://doi.org/10.1007/978-3-319-42524-5_2.
Kawai, H. (1998). A brief history of recognition of the Kuroshio. Progress in Oceanography, 41(4), 505-578. https://doi.org/10.1016/S0079-6611(98)00024-X.
Lalli, C., & Parsons, T. R. (1997). Biological oceanography: An introduction. Elsevier. https://doi.org/10.1016/B978-075063384-0/50001-3.
Laurel, B. J., & Rogers, L. A. (2020). Loss of spawning habitat and prerecruits of Pacific cod during a Gulf of Alaska heatwave. Canadian Journal of Fisheries and Aquatic Sciences, 77(4), 644-650. https://doi.org/10.1139/cjfas-2019-0238.
Lehodey, P., Senina, I., Calmettes, B., Hampton, J., & Nicol, S. (2013). Modelling the impact of climate change on Pacific skipjack tuna population and fisheries. Climatic Change, 119, 95-109. https://doi.org/10.1007/s10584-012-0595-1.
Lett, C., Penven, P., Ayón, P., & Fréon, P. (2007). Enrichment, concentration and retention processes in relation to anchovy (Engraulis ringens) eggs and larvae distributions in the northern Humboldt upwelling ecosystem. Journal of Marine Systems, 64(1-4), 189-200. https://doi.org/10.1016/j.jmarsys.2006.03.012.
Li, L., Hollowed, A. B., Cokelet, E. D., Barbeaux, S. J., Bond, N. A., Keller, A. A., King, J. R., McClure, M. M., Palsson, W. A., & Stabeno, P. J. (2019). Subregional differences in groundfish distributional responses to anomalous ocean bottom temperatures in the northeast Pacific. Global Change Biology, 25(8), 2560-2575. https://doi.org/10.1111/gcb.14676.
Li, M., Xu, Y., Sun, M., Li, J., Zhou, X., Chen, Z., & Zhang, K. (2023). Impacts of strong ENSO events on fish communities in an overexploited ecosystem in the South China Sea. Biology, 12(7), 946. https://doi.org/10.3390/biology12070946.
Li, X., Hu, Z. Z., Tseng, Y. h., Liu, Y., & Liang, P. (2022). A historical perspective of the La Niña event in 2020/2021. Journal of Geophysical Research: Atmospheres, 127(7), e2021JD035546. https://doi.org/10.1029/2021JD035546.
Liu, S., Liu, Y., Li, J., Cao, C., Tian, H., Li, W., Tian, Y., Watanabe, Y., Lin, L., & Li, Y. (2022). Effects of oceanographic environment on the distribution and migration of Pacific saury (Cololabis saira) during main fishing season. Scientific Reports, 12(1), 13585. https://doi.org/10.1038/s41598-022-17786-9.
Lo, N. C., Macewicz, B. J., & Griffith, D. A. (2005). Spawning biomass of Pacific sardine (Sardinops sagax), from 1994-2004 off California. California Cooperative Oceanic Fisheries Investigations Report, 46, 93.
Lynn, R. J. (1967). Seasonal variation of temperature and salinity at 10 meters in the California Current. Calif. Coop. Oceanic Fish. Invest. Rep, 11(157-186), 31.
Mann, K. H., & Lazier, J. R. (2005). Dynamics of marine ecosystems: Biological-physical interactions in the oceans. John Wiley & Sons. https://doi.org/10.1002/9781118687901.
Matano, R. P., & Palma, E. D. (2008). On the upwelling of downwelling currents. Journal of Physical Oceanography, 38(11), 2482-2500. https://doi.org/10.1175/2008JPO3783.1.
Merino, M., & Monreal-Gómez, M. (2009). Ocean currents and their impact on marine life. Marine Ecology, 47-52.
Montecino, V., & Lange, C. B. (2009). The Humboldt Current System: Ecosystem components and processes, fisheries, and sediment studies. Progress in Oceanography, 83(1-4), 65-79. https://doi.org/10.1016/j.pocean.2009.07.041.
Morales-Bojorquez, E., & Nevarez-Martinez, M. O. (2005). Spawner-recruit patterns and investigation of allee effect in pacific sardine (Sardinops sagax) in the Gulf of California, Mexico. California Cooperative Oceanic Fisheries Investigations Report, 46, 161.
Morioka, Y., Varlamov, S., & Miyazawa, Y. (2019). Role of Kuroshio Current in fish resource variability off southwest Japan. Scientific Reports, 9(1), 17942. https://doi.org/10.1038/s41598-019-54432-3.
Munguia-Vega, A., Marinone, S. G., Paz-Garcia, D. A., Giron-Nava, A., Plomozo-Lugo, T., Gonzalez-Cuellar, O., Weaver, A. H., García-Rodriguez, F. J., & Reyes-Bonilla, H. (2018). Anisotropic larval connectivity and metapopulation structure driven by directional oceanic currents in a marine fish targeted by small-scale fisheries. Marine Biology, 165, 1-16. https://doi.org/10.1007/s00227-017-3267-x.
Muñoz, N. S., Bonilla, S., Arocena, R., Maciel, F., Haakonsson, S., Pedocchi, F., & Machado, I. (2023). Estuarine front dynamics: A key driver of fish larvae dispersion in a large subtropical estuary. Research Square. https://doi.org/10.21203/rs.3.rs-3059329/v1.
Nagai, T. (2019). The Kuroshio current: Artery of life. Eos, 100, https://doi.org/10.1029/2019EO131369.
Nagai, T., Durán, G. S., Otero, D. A., Mori, Y., Yoshie, N., Ohgi, K., Hasegawa, D., Nishina, A., & Kobari, T. (2019). How the Kuroshio Current delivers nutrients to sunlit layers on the continental shelves with aid of near-inertial waves and turbulence. Geophysical Research Letters, 46(12), 6726-6735.
Neumann, G. (2014). Ocean currents. Elsevier.
Nevárez-Martınez, M. O., Lluch-Belda, D., Cisneros-Mata, M. A., Santos-Molina, J. P., De los Angeles Martı́nez-Zavala, M., & Lluch-Cota, S. E. (2001). Distribution and abundance of the Pacific sardine (Sardinops sagax) in the Gulf of California and their relation with the environment. Progress in Oceanography, 49(1-4), 565-580. https://doi.org/10.1016/S0079-6611(01)00041-6.
Nnamchi, H. C., Li, J., Kucharski, F., Kang, I.-S., Keenlyside, N. S., Chang, P., & Farneti, R. (2015). Thermodynamic controls of the Atlantic Niño. Nature Communications, 6(1), 8895. https://doi.org/10.1038/ncomms9895.
NOAA. (2023). October 2023 El Niño update: big cats. https://www.climate.gov/news-features/blogs/october-2023-el-nino-update-big-cats, Accessed on 2, December 2023
Norcross, B. L., & Shaw, R. F. (1984). Oceanic and estuarine transport of fish eggs and larvae: a review. Transactions of the American Fisheries Society, 113(2), 153-165. https://doi.org/10.1577/1548-8659(1984)113%3C153:OAETOF%3E2.0.CO;2.
Oliver, E. C., Benthuysen, J. A., Bindoff, N. L., Hobday, A. J., Holbrook, N. J., Mundy, C. N., & Perkins-Kirkpatrick, S. E. (2017). The unprecedented 2015/16 Tasman Sea marine heatwave. Nature Communications, 8(1), 16101. https://doi.org/10.1038/ncomms16101.
Ordinola, N. (2002). The consequences of cold events for Peru. La Niña and its impacts: facts and speculation. United Nations University Press, New York, 146-150.
Osse, J., & Van den Boogaart, J. (1999). Dynamic morphology of fish larvae, structural implications of friction forces in swimming, feeding and ventilation. Journal of Fish Biology, 55, 156-174. https://doi.org/10.1111/j.1095-8649.1999.tb01053.x.
Peña, M. A., Lewis, M. R., & Cullen, J. J. (1994). New production in the warm waters of the tropical Pacific Ocean. Journal of Geophysical Research: Oceans, 99(C7), 14255-14268. https://doi.org/10.1029/94JC00603.
Petatán-Ramírez, D., Ojeda-Ruiz, M. Á., Sánchez-Velasco, L., Rivas, D., Reyes-Bonilla, H., Cruz-Piñón, G., Morzaria-Luna, H. N., Cisneros-Montemayor, A. M., Cheung, W., & Salvadeo, C. (2019). Potential changes in the distribution of suitable habitat for Pacific sardine (Sardinops sagax) under climate change scenarios. Deep Sea Research Part II: Topical Studies in Oceanography, 169, 104632. https://doi.org/10.1016/j.dsr2.2019.07.020.
Philander, S. (2001). El Nino Southern Oscillation (ENSO) Models. https://doi.org/10.1016/B978-012374473-9.00401-X.
Philander, S. G. (1989). El Niño, La Niña, and the southern oscillation. International Geophysics Series, 46, X-289.
Qiu, B., & Lukas, R. (1996). Seasonal and interannual variability of the North Equatorial Current, the Mindanao Current, and the Kuroshio along the Pacific western boundary. Journal of Geophysical Research: Oceans, 101(C5), 12315-12330. https://doi.org/10.1029/95JC03204.
Qiu, B., Rudnick, D. L., Cerovecki, I., Cornuelle, B. D., Chen, S., Schönau, M. C., McClean, J. L., & Gopalakrishnan, G. (2015). The Pacific North Equatorial Current: New insights from the origins of the Kuroshio and Mindanao currents (OKMC) project. Oceanography, 28(4), 24-33. https://doi.org/10.5670/oceanog.2015.78.
Ramesh, N., Rising, J. A., & Oremus, K. L. (2019). The small world of global marine fisheries: The cross-boundary consequences of larval dispersal. Science, 364(6446), 1192-1196. https://doi.org/10.1126/science.aav3409.
Redondo-Rodriguez, A., Weeks, S. J., Berkelmans, R., Hoegh-Guldberg, O., & Lough, J. M. (2011). Climate variability of the Great Barrier Reef in relation to the tropical Pacific and El Niño-Southern Oscillation. Marine and Freshwater Research, 63(1), 34-47. https://doi.org/10.1071/MF11151.
Richardson, D. E., Llopiz, J. K., Leaman, K. D., Vertes, P. S., Muller-Karger, F. E., & Cowen, R. K. (2009). Sailfish (Istiophorus platypterus) spawning and larval environment in a Florida Current frontal eddy. Progress in Oceanography, 82(4), 252-264. https://doi.org/10.1016/j.pocean.2009.07.003.
Rodríguez, J. M., Hernández-León, S., & Barton, E. D. (2006). Vertical distribution of fish larvae in the Canaries-African coastal transition zone in summer. Marine Biology, 149, 885-897. https://doi.org/10.1007/s00227-006-0270-z.
Saito, H. (2019). The Kuroshio: Its recognition, scientific activities, and emerging issues. In T. Nagai, H. Saito, K. Suzuki, & M. Takahashi (Eds.), Kuroshio Current: Physical, biogeochemical, and ecosystem dynamics (pp. 1-11). American Geophysical Union. https://doi.org/10.1002/9781119428428.ch1.
Salvatteci, R., Field, D., Gutierrez, D., Baumgartner, T., Ferreira, V., Ortlieb, L., Sifeddine, A., Grados, D., & Bertrand, A. (2018). Multifarious anchovy and sardine regimes in the Humboldt Current System during the last 150 years. Global Change Biology, 24(3), 1055-1068. https://doi.org/10.1111/gcb.13991.
Santander-Rodríguez, V., Díez-Minguito, M., & Espinoza-Andaluz, M. (2022). Influence of stratification and bottom boundary layer on the classical Ekman model. Journal of Marine Science and Engineering, 10(10), 1388. https://doi.org/10.3390/jmse10101388.
Santora, J. A., Sydeman, W. J., Schroeder, I. D., Field, J. C., Miller, R. R., & Wells, B. K. (2017). Persistence of trophic hotspots and relation to human impacts within an upwelling marine ecosystem. Ecological Applications, 27(2), 560-574. https://doi.org/10.1002/eap.1466.
Sato, Y., Yukimoto, S., Tsujino, H., Ishizaki, H., & Noda, A. (2006). Response of North Pacific ocean circulation in a Kuroshio-resolving ocean model to an Arctic Oscillation (AO)-like change in Northern Hemisphere atmospheric circulation due to greenhouse-gas forcing. Journal of the Meteorological Society of Japan. Ser. II, 84(2), 295-309. https://doi.org/10.2151/jmsj.84.295.
Schilling, H. T., Everett, J. D., Smith, J. A., Stewart, J., Hughes, J. M., Roughan, M., Kerry, C., & Suthers, I. M. (2020). Multiple spawning events promote increased larval dispersal of a predatory fish in a western boundary current. Fisheries Oceanography, 29(4), 309-323. https://doi.org/10.1111/fog.12473.
Schott, F. A., Xie, S. P., & McCreary Jr, J. P. (2009). Indian Ocean circulation and climate variability. Reviews of Geophysics, 47(1). https://doi.org/10.1029/2007RG000245.
Scott, R., Marsh, R., & Hays, G. C. (2014). Ontogeny of long distance migration. Ecology, 95(10), 2840-2850. https://doi.org/10.1890/13-2164.1.
Segar, D. A., & Segar, E. S. (2018). Introduction to ocean sciences (Fourth edition. Second digital edition ver 4.01 ed.). Douglas A. Segar.
Seidel, H. F., & Giese, B. S. (1999). Equatorial currents in the Pacific Ocean 1992-1997. Journal of Geophysical Research: Oceans, 104(C4), 7849-7863. https://doi.org/10.1029/1999JC900036.
Shanks, A. L., & Eckert, G. L. (2005). Population persistence of California Current fishes and benthic crustaceans: A marine drift paradox. Ecological Monographs, 75(4), 505-524. https://doi.org/10.1890/05-0309.
Simon, A., Pires, C., Frölicher, T. L., & Russo, A. (2023). Long-term warming and interannual variability contributions' to marine heatwaves in the Mediterranean. Weather and Climate Extremes, 42, 100619. https://doi.org/10.1016/j.wace.2023.100619.
Siple, M. C., Essington, T. E., Barnett, L. A., & Scheuerell, M. D. (2020). Limited evidence for sardine and anchovy asynchrony: Re-examining an old story. Proceedings of the Royal Society B, 287(1922), 20192781. https://doi.org/10.1098/rspb.2019.2781.
Sirota, A., Lebedev, S., & Kostianoy, A. (2004). Oceanic currents in the southeastern Pacific Ocean as revealed by satellite altimetry data. Gayana (Concepción), 68(2), 539-542. https://doi.org/10.4067/S0717-65382004000300040.
Smith, K. A., & Suthers, I. M. (1999). Displacement of diverse ichthyoplankton assemblages by a coastal upwelling event on the Sydney shelf. Marine Ecology Progress Series, 176, 49-62. https://doi.org/10.3354/meps176049.
Snyder, M. A., Sloan, L. C., Diffenbaugh, N. S., & Bell, J. L. (2003). Future climate change and upwelling in the California Current. Geophysical Research Letters, 30(15). https://doi.org/10.1029/2003GL017647.
Sousa, M. C., Alvarez, I., deCastro, M., Gomez-Gesteira, M., & Dias, J. M. (2017). Seasonality of coastal upwelling trends under future warming scenarios along the southern limit of the Canary upwelling system. Progress in Oceanography, 153, 16-23. https://doi.org/10.1016/j.pocean.2017.04.002.
Stewart, R. H. (2008). Introduction to physical oceanography. Robert H. Stewart.
Storlazzi, C. D., & Reid, J. A. (2010). The influence of El Niño-Southern Oscillation (ENSO) cycles on wave-driven sea-floor sediment mobility along the central California continental margin. Continental Shelf Research, 30(14), 1582-1599. https://doi.org/10.1016/j.csr.2010.06.004.
Strub, P. T., Combes, V., Shillington, F. A., & Pizarro, O. (2013). Currents and processes along the eastern boundaries. In International geophysics (Vol. 103, pp. 339-384). Elsevier. https://doi.org/10.1016/B978-0-12-391851-2.00014-3.
Sverdrup, H. (1940). The currents of the Pacific Ocean and their bearing on the climates of the coasts. Science, 91(2360), 273-282. https://doi.org/10.1126/science.91.2360.273.
Thiaw, M., Auger, P.-A., Ngom, F., Brochier, T., Faye, S., Diankha, O., & Brehmer, P. (2017). Effect of environmental conditions on the seasonal and inter-annual variability of small pelagic fish abundance off North-West Africa: The case of both Senegalese sardine. Fisheries Oceanography, 26(5), 583-601. https://doi.org/10.1111/fog.12218.
Twatwa, N., Van Der Lingen, C., Drapeau, L., Moloney, C., & Field, J. (2005). Characterising and comparing the spawning habitats of anchovy Engraulis encrasicolus and sardine Sardinops sagax in the southern Benguela upwelling ecosystem. African Journal of Marine Science, 27(2), 487-499. https://doi.org/10.2989/18142320509504107.
Ueno, H., Bracco, A., Barth, J. A., Budyansky, M. V., Hasegawa, D., Itoh, S., Kim, S. Y., Ladd, C., Lin, X., & Park, Y.-G. (2023). Review of oceanic mesoscale processes in the North Pacific: Physical and biogeochemical impacts. Progress in Oceanography, 212, 102955. https://doi.org/10.1016/j.pocean.2022.102955.
Valencia-Gasti, J. A., Baumgartner, T., & Durazo, R. (2015). Effects of ocean climate on life cycles and distribution of small pelagic fishes in the California Current System off Baja California. Ciencias Marinas, 41(4), 315-348. https://doi.org/10.7773/cm.v41i4.2571.
van Ginneken, V. (2019). Plastic in the food chain and the expected pandemic of cancer? NACS, 3(3). https://doi.org/10.31031/NACS.2019.03.000564.
Wang, D., Gouhier, T. C., Menge, B. A., & Ganguly, A. R. (2015). Intensification and spatial homogenization of coastal upwelling under climate change. Nature, 518(7539), 390-394. https://doi.org/10.1038/nature14235.
Webb, P. (2019). Introduction to oceanography. Rebus Community. Open Text Book Library, 303.
Wells, B. K., Santora, J. A., Schroeder, I. D., Mantua, N., Sydeman, W. J., Huff, D. D., & Field, J. C. (2016). Marine ecosystem perspectives on Chinook salmon recruitment: A synthesis of empirical and modeling studies from a California upwelling system. Marine Ecology Progress Series, 552, 271-284. https://doi.org/10.3354/meps11757.
Whitney, J. L., Gove, J. M., McManus, M. A., Smith, K. A., Lecky, J., Neubauer, P., Phipps, J. E., Contreras, E. A., Kobayashi, D. R., & Asner, G. P. (2021). Surface slicks are pelagic nurseries for diverse ocean fauna. Scientific Reports, 11(1), 3197. https://doi.org/10.1038/s41598-021-81407-0.
Wu, C.-R., Wang, Y.-L., & Chao, S.-Y. (2019). Disassociation of the Kuroshio current with the Pacific decadal oscillation since 1999. Remote Sensing, 11(3), 276. https://doi.org/10.3390/rs11030276.
Wulandari, S., Ismanto, A., & Sugianto, D. N. (2023). Two dimensional hydrodynamic simulation in Labuan Bajo waters, Indonesia. IOP Conference Series: Earth and Environmental Science, 1224(1), 012031. https://doi.org/10.1088/1755-1315/1224/1/012031.
Wyrtki, K. (1967). Equatorial Pacific Ocean. International Journal of Oceanology and Limnology, 1, 117-147.
Yang, H., Lohmann, G., Wei, W., Dima, M., Ionita, M., & Liu, J. (2016). Intensification and poleward shift of subtropical western boundary currents in a warming climate. Journal of Geophysical Research: Oceans, 121(7), 4928-4945. https://doi.org/10.1002/2015JC011513.
Yang, Q., Cokelet, E. D., Stabeno, P. J., Li, L., Hollowed, A. B., Palsson, W. A., Bond, N. A., & Barbeaux, S. J. (2019). How "The Blob" affected groundfish distributions in the Gulf of Alaska. Fisheries Oceanography, 28(4), 434-453. https://doi.org/10.1111/fog.12422.
Yang, X., Tziperman, E., & Speer, K. (2020). Dynamics of deep ocean eastern boundary currents. Geophysical Research Letters, 47(1), e2019GL085396. https://doi.org/10.1029/2019GL085396.
Yatsu, A., Chiba, S., Yamanaka, Y., Ito, S.-i., Shimizu, Y., Kaeriyama, M., & Watanabe, Y. (2013). Climate forcing and the Kuroshio/Oyashio ecosystem. ICES Journal of Marine Science, 70(5), 922-933. https://doi.org/10.1093/icesjms/fst084.
Yu, J., Li, T., & Jiang, L. (2023). Why does a stronger El Niño favor developing towards the eastern Pacific while a stronger La Niña favors developing towards the central Pacific? Atmosphere, 14(7), 1185. https://doi.org/10.3390/atmos14071185.
Zhang, Y., Du, Y., Feng, M., & Hobday, A. J. (2023). Vertical structures of marine heatwaves. Nature Communications, 14(1), 6483. https://doi.org/10.1038/s41467-023-42219-0.
Zhang, Y., Zheng, X., Kong, D., Yan, H., & Liu, Z. (2021). Enhanced North Pacific subtropical gyre circulation during the late Holocene. Nature Communications, 12(1), 5957. https://doi.org/10.1038/s41467-021-26218-7.
Zheng, X., Li, A., Kao, S., Gong, X., Frank, M., Kuhn, G., Cai, W., Yan, H., Wan, S., & Zhang, H. (2016). Synchronicity of Kuroshio Current and climate system variability since the Last Glacial Maximum. Earth and Planetary Science Letters, 452, 247-257. https://doi.org/10.1016/j.epsl.2016.07.028.
DOI: https://doi.org/10.29103/joms.v1i3.18627
Article Metrics
Abstract Views : 267 timesPDF Downloaded : 5 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Md Afsar Ahmed Sumon, Sugeng Hartono, Ramzi H. Amran, Muhammad Browijoyo Santanumurti, Saadullah Jan Khan, Sajia Akther, Mohamed Hosny Gabr, Nguyen Vu Linh, Hien Van Doan
This work is licensed under a Creative Commons Attribution 4.0 International License.
Journal of Marine Studies published by the Department of Marine Science, part of the Universitas Malikussaleh
Content on this site: Copyright © 2024 Journal of Marine Studies
Journal of Marine Studies is licensed under a Creative Commons Attribution 4.0 International License