Coral community structure at Celukan Bawang Reefs, Buleleng Regency, Bali Island

Widiastuti Widiastuti, Daniel Tosan Kaigere

Abstract


Celukan Bawang water has a strategic location in the northern part of Bali Island that threatened its surrounding coral reefs by shipping, power plant, industrial activities, and shrimp ponds. However, there is limited data on its biodiversity status. Therefore, it is necessary to provide factual information regarding the coral reef ecosystem condition in scientific data. This study aimed to measure the coral reef`s components and the community structure. The coverage of coral reef components was collected based on the UPT method, while community structure data was taken in a belt transect within two different sites. All data was collected in December 2020. The difference in coral reef ecosystem components among sites was analyzed with the Paired-T and Kruskal-Wallis tests (for the non-homogenous data). Results showed that the coverage of live coral colonies in Site 1 is categorized as poor, whereas Site 2 is classified as moderate. Reefs were dominated by type growth non-Acropora massive from the family of Faviidae and encrusting from the family of Pocilloporidae. Statistically, there were no significant differences in all coral reef ecosystem components among Sites 1 and 2. Diversity and Evenness Indices were similarly low in the two sites. Dominance Index demonstrated that Site 1 was lower than Site 2 (moderate). It might be related to the coverage of the abiotic component, which, despite being statistically insignificant, showed that Site 2 has a higher percentage of rubbles and rocks. Rubble and rock can be a substrate for the coral juvenile to attach.

Keywords: Community structure; Coral reef; Celukan Bawang; Buleleng


Full Text:

PDF

References


Allan, J. R., Watson, J. E., Di Marco, M., O’Bryan, C. J., Possingham, H. P., Atkinson, S. C., & Venter, O. (2019). Hotspots of human impact on threatened terrestrial vertebrates. PLoS biology, 17(3), e3000158.

Beyer, H. L., Kennedy, E. V., Beger, M., Chen, C. A., Cinner, J. E., Darling, E. S., Eakin, C. M., Gates, R. D., Heron, S. F., & Knowlton, N. (2018). Risk‐sensitive planning for conserving coral reefs under rapid climate change. Conservation Letters, 11(6), e12587.

Board, W. E. (2022). World Register of Marine Species https://doi.org/https://doi.org/10.14284/170

Burke, L., Reytar, K., Spalding, M., & Perry, A. (2011). Reefs at risk revisited. World Resources Institute.

Chávez, E., Tunnell, J., & Withers, K. (2007). Reef zonation and ecology: Veracruz shelf and Campeche Bank. Coral Reefs of the Southern Gulf of Mexico, W. Tunnel, EA Chávez and K. Withers (eds.). Texas University Press, Huston, 41-67.

Claar, D. C., Starko, S., Tietjen, K. L., Epstein, H. E., Cunning, R., Cobb, K. M., Baker, A. C., Gates, R. D., & Baum, J. K. (2020). Dynamic symbioses reveal pathways to coral survival through prolonged heatwaves. Nature communications, 11(1), 1-10.

Côté, I. M., Darling, E. S., & Brown, C. J. (2016). Interactions among ecosystem stressors and their importance in conservation. Proceedings of the Royal Society B: Biological Sciences, 283(1824), 20152592.

Cruz-Piñón, G., Carricart-Ganivet, J., & Espinoza-Avalos, J. (2003). Monthly skeletal extension rates of the hermatypic corals Montastraea annularis and Montastraea faveolata: biological and environmental controls. Marine Biology, 143(3), 491-500.

Darling, E. S., McClanahan, T. R., Maina, J., Gurney, G. G., Graham, N. A., Januchowski-Hartley, F., Cinner, J. E., Mora, C., Hicks, C. C., & Maire, E. (2019). Social–environmental drivers inform strategic management of coral reefs in the Anthropocene. Nature ecology & evolution, 3(9), 1341-1350.

Erftemeijer, P. L., Riegl, B., Hoeksema, B. W., & Todd, P. A. (2012). Environmental impacts of dredging and other sediment disturbances on corals: a review. Marine pollution bulletin, 64(9), 1737-1765.

Fox, H. E., & Caldwell, R. L. . (2006). Recovery from blast fishing on coral reefs: a tale of two scales. Ecological Applications, 16(5), 1631-1635.

Frihy, O. E., El Ganaini, M. A., El Sayed, W. R., & Iskander, M. M. (2004). The role of fringing coral reef in beach protection of Hurghada, Gulf of Suez, Red Sea of Egypt. Ecological Engineering, 22(1), 17-25.

Giyanto, I. B., & Soedarma, D. (2010). Efisiensi dan akurasi pada proses analisis foto bawah air untuk menilai kondisi terumbu karang. Oseanologi dan Limnologi di Indonesia, 36(1), 111-130.

Grantham, R., Lau, J., & Kleiber, D. (2020). Gleaning: beyond the subsistence narrative. Maritime Studies, 19(4), 509-524.

He, Q., & Silliman, B. R. (2019). Climate change, human impacts, and coastal ecosystems in the Anthropocene. Current Biology, 29(19), R1021-R1035.

Hidayat, W., Warpala, I. S., & Dewi, N. S. R. (2019). Komposisi jenis lamun (seagrass) dan karakteristik biofisik perairan di kawasan Pelabuhan Desa Celukanbawang Kecamatan Gerokgak Kabupaten Buleleng Bali. Jurnal Pendidikan Biologi Undiksha, 5(3), 133-145.

Hoegh-Guldberg, O., Kennedy, E. V., Beyer, H. L., McClennen, C., & Possingham, H. P. (2018). Securing a long-term future for coral reefs. Trends in Ecology & Evolution, 33(12), 936-944.

Indrawan, I. N. P., Damayanti, A., & Rustanto, A. (2019). Abrasion and accresion at West of Buleleng subdistrict’s coastal area, Bali (case study: Gerokgak Regency, Seririt Regency, Banjar Regency, and Buleleng Regency). IOP Conference Series: Earth and Environmental Science,

Johns, K. A., Emslie, M. J., Hoey, A. S., Osborne, K., Jonker, M. J., Cheal, A. J. (2018). acroalgal feedbacks and substrate properties maintain a coral reef regime shift. . Ecosphere, 9(7), e02349. https://doi.org/https://doi.org/10.1002/ecs2.2349

Lamb, J. B., Wenger, A. S., Devlin, M. J., Ceccarelli, D. M., Williamson, D. H., & Willis, B. L. (2016). Reserves as tools for alleviating impacts of marine disease. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1689), 20150210.

Lirman, D., Orlando, B., Maciá, S., Manzello, D., Kaufman, L., Biber, P., & Jones, T. (2003). Coral communities of Biscayne Bay, Florida and adjacent offshore areas: diversity, abundance, distribution, and environmental correlates. Aquatic Conservation: marine and freshwater ecosystems, 13(2), 121-135.

Luthfi, O., & Priyambodo, A. (2020). Bioerosion in massive porites at reef flat area of the south Java Sea. IOP Conference Series: Earth and Environmental Science,

Marfai, M. A., Winastuti, R., Wicaksono, A., & Mutaqin, B. W. (2022). Coastal morphodynamic analysis in Buleleng Regency, Bali—Indonesia. Natural Hazards, 111(1), 995-1017.

Nugues, M. M., & Roberts, C. M. (2003). Partial mortality in massive reef corals as an indicator of sediment stress on coral reefs. Marine pollution bulletin, 46(3), 314-323.

O’Hara, C. C., Frazier, M., & Halpern, B. S. (2021). At-risk marine biodiversity faces extensive, expanding, and intensifying human impacts. Science, 372(6537), 84-87.

Shaver, E. C., Burkepile, D. E., & Silliman, B. R. (2018). Local management actions can increase coral resilience to thermally-induced bleaching. Nature ecology & evolution, 2(7), 1075-1079.

Survey Manual for Tropical Marine Resources. ASEAN-Australian Marine Science Project: Living Coastal Resources. (1994). (S. English, Wilkinson, C., Baker, V. , Ed.). Australian Institute of Marine Science.

Todd, P., Sanderson, P., & Chou, L. (2001). Morphological variation in the polyps of the scleractinian coral Favia speciosa (Dana) around Singapore. Hydrobiologia, 444(1), 227-235.

Todd, P. A., Ladle, R. J., Lewin-Koh, N., & Chou, L. M. (2004). Genotype× environment interactions in transplanted clones of the massive corals Favia speciosa and Diploastrea heliopora. Marine Ecology Progress Series, 271, 167-182.

Tulloch, V. J., Tulloch, A. I., Visconti, P., Halpern, B. S., Watson, J. E., Evans, M. C., Auerbach, N. A., Barnes, M., Beger, M., & Chadès, I. (2015). Why do we map threats? Linking threat mapping with actions to make better conservation decisions. Frontiers in Ecology and the Environment, 13(2), 91-99.

Viehman, T. S., Hench, J. L., Griffin, S. P., Malhotra, A., Egan, K., & Halpin, P. N. (2018). Understanding differential patterns in coral reef recovery: chronic hydrodynamic disturbance as a limiting mechanism for coral colonization. Marine Ecology Progress Series, 605, 135-150.




DOI: https://doi.org/10.29103/aa.v9i3.8691

Article Metrics

 Abstract Views : 82 times
 PDF Downloaded : 1 times

Refbacks

  • There are currently no refbacks.



Copyright (c) Acta Aquatica: Aquatic Sciences Journal   

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.