Coculture of aquatic animals and paddy in brackish water: Evaluation of the growth of daily growth and morphometrics of tilapia (Oreochromis niloticus) as a fed species

Heriansah Heriansah, Arnold Kabangnga, Nur Fajriani Nursida, Renal Renal, Muh. Izzul Alfarifdi

Abstract


A study on the cultivation of tilapia (Oreochromis niloticus) in brackish water using co-culture systems (polyculture, IMTA-non paddy, and IMTA-paddy) and monoculture systems was evaluated on a laboratory scale to determine its growth. Several species of aquatic animals and paddy (floating system) were combined with tilapia reared in plastic tanks for 28 days. Tilapia were fed four times a day at a feeding rate of 10% of biomass. The highest specific growth rate (SGR), IMTA-paddy system (4.24±0.08% day-1), polyculture (4.13±0.06% day-1), IMTA-non paddy (3.84±0.23% day-1), and monoculture (3.80±0.05% day-1). The same pattern was found in the addition of morphometric characteristics (AMC). Total length, standard length, body length, and height respectively from the highest IMTA-paddy system (2.49±0.12; 2.14±0.12; 1.81±0.14; 0.49±0.19 g), polyculture (2.32±0.16; 2.07±0.09; 1.72±0.11; 0.41±0.11 g), IMTA-non paddy (2.18±0.12; 1.78±0.15; 1.62±0.15; 0.33±0.14 g), and monoculture (2.02±0,09 1.67±0.08; 1.57±0.08; 0.30±0.10 g). Analysis of variance indicated that SGR and AMC of tilapia were significantly influenced by the culture system (P<0.05). The SGR and AMC in the IMTA-paddy system were significantly higher (P<0.05) than those in the monoculture and IMTA-non-paddy systems, but not significantly different (P>0.05) from those in the polyculture system. In general, tilapia growth was higher in co-culture systems than in monoculture systems in brackish water, which led to the diversification of aquaculture production.

Keywords: Brackish water; Co-culture; Growth; Nile tilapia; Rice.


Full Text:

PDF

References


Abou, Y., Fiogbe, E., Aina, M., and Buldgen, A., 2010. Evaluation of Nitrogen and Phosphorus Wastes Produced by Nile Tilapia (Oreochromis niloticus L.) Fed Azolla-diets in Concrete Tanks. International Journal of Biological and Chemical Sciences, 4(1): 502–507. https://doi.org/10.4314/ ijbcs.v4i1.54229

An, B.N.T., and Anh, N.T.N. 2020. Co-culture of Nile tilapia (Oreochromis niloticus) and red seaweed (Gracilaria tenuistipitata) Under Different Feeding Rates. Journal of Applied Phycology, 32(3): 2031–2040. https://doi.org/ 10.1007/s10811-020-02110-7

Anam, M.K., Basuki, F., and Widowati, L.L. 2016. Performa Pertumbuhan, Kelulushidupan, dan Produksi Biomassa Ikan Nila dengan Debit Air yang Berbeda pada Sistem Budidaya Minapadi di Dusun Kandhangan, Sleman, Yogyakarta. Sains Akuakultur Tropis, 1(1): 52–61.

Barani, H.K., Dahmardeh, H., Miri, M., and Rigi, M. 2019. The Effects of Feeding Rates on Growth Performance, Feed Conversion Efficiency and Body Composition of Juvenile Snow. Iranian Journal of Fisheries Sciences, 18(3): 507–516. https://doi.org/10.22092/ijfs.2019.118285

Campanati, C., Willer, D., Schubert, J., and Aldridge, D.C. 2022. Sustainable Intensification of Aquaculture through Nutrient Recycling and Circular Economies: More Fish, Less Waste, Blue Growth. Reviews in Fisheries Science and Aquaculture, 30(2): 143–169. https://doi.org/10.1080/ 23308249.2021.1897520

Chary, K., Aubin, J., Sadoul, B., Fiandrino, A., Covès, D., and Callier, M.D. 2020. Integrated Multi-Trophic Aquaculture of Red Drum (Sciaenops ocellatus) and Sea Cucumber (Holothuria scabra): Assessing Bioremediation and Life-Cycle Impacts. Aquaculture, 516: 734621. https://doi.org/10.1016/ j.aquaculture.2019.734621

Chatvijitkul, S., Boyd, C.E., and Davis, D.A. 2018. Nitrogen, Phosphorus, and Carbon Concentrations in Some Common Aquaculture Feeds. Journal of the World Aquaculture Society, 49(3): 477–483. https:// doi.org/10.1111/jwas.12443

Dahril, I., Tang, U.M., dan Putra, I. 2017. Pengaruh Salinitas Berbeda terhadap Pertumbuhan dan Kelulushidupan Benih Ikan Nila Merah (Oreochromis sp.). Berkala Perikanan Terubuk, 45(3): 67–75. https://terubuk. ejournal.unri.ac.id/index.php/JT/article/view/5198

Dauda, A.B., Ajadi, A., Tola-Fabunmi, A.S., and Akinwole, A.O. 2019. Waste Production in Aquaculture: Sources, Components and Managements in Different Culture Systems. Aquaculture and Fisheries, 4(3): 81–88. https://doi.org/10.1016/j.aaf.2018.10.002

David, F.S., Proença, D.C., Flickinger, D.L., Wolff Bueno, G., and Valenti, W.C. 2021. Carbon Budget in Integrated Aquaculture Systems with Nile Tilapia (Oreochromis niloticus) and Amazon river prawn (Macrobrachium amazonicum). Aquaculture Research, 52(11): 5155–5167. https://doi.org/10.1111/are.15384

El-Leithy, A.A.A., Hemeda, S.A., El Naby, W.S.H.A., El-Deeb, S.I., and Helmy, Z.A. 2019. Optimum salinity for Nile tilapia (Oreochromis niloticus) Growth and mRNA Transcripts of Ion-Regulation, Inflammatory, Stress- and Immune-Related Genes. Fish Physiology and Biochemistry, 45(4): 1217–1232.https://doi.org/10.1007/s10695-019-00640-7

Emerenciano, M.G.C., Rombenso, A.N., Vieira, F.D. N., Martins, M. A., Coman, G. J., Truong, H. H., Noble, T. H., and Simon, C. J. 2022. Intensification of penaeid Shrimp Culture: An Applied Review of Advances in Production Systems, Nutrition And Breeding. Animals, 12(3). https:// doi.org/10.3390/ani12030236

FAO. 2022. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. Rome, FAO. https://doi.org/https://doi.org/10.4060/cc0461en

Feng, J., Li, F., Zhou, X., Xu, C., and Fang, F. 2016. Nutrient Removal Ability and Economical Benefit of A Rice-Fish Co-Culture System in Aquaculture Pond. Ecological Engineering, 9: 315–319. https://doi.org/10.1016/j.ecoleng. 2016.06.002

Hamsiah, Cahyono, I., Heriansah, Kantun, W., and Kabangnga, A. 2021. The Survival Rate of Biota in Integrated Multi Trophic Aquaculture (IMTA)-Paddy System. Jurnal Sumberdaya Akuatik Indopasifik, 5(2): 127–136.

He, J., Feng, P., Lv, C., Lv, M., Ruan, Z., Yang, H., Ma, H., and Wang, R. 2020. Effect of a Fish–Rice Co-Culture System on The Growth Performance and Muscle Quality of Tilapia (Oreochromis niloticus). Aquaculture Reports, 17: 100367. https://doi.org/10.1016/j.aqrep.2020.100367

Heriansah, Kabangnga, A., and Nursida, N. F. 2023. Panduan Pembuatan dan Penggunaan Wadah Apung Tanaman untuk Riset Akuakultur Multi-Trofik. Hak Cipta, 000443037. Kementerian Hukum dan Hak Asasi Manusia.

Heriansah, Syamsuddin, R., Najamuddin., and Syafiuddin. 2022. Growth of Kappaphcus alvarezii in Vertical Method of Multi-Trophic System Based on Feeding Rate. Egyptian Journal of Aquatic Biology and Fisheries, 26(5): 1197–1210. https://doi.org/10.21608/ejabf.2022.267643

Hidayati, D., Nurtjahyani, S.D., Oktafitria, D., Ashuri, N.M., and Kurniallah, W. 2019. Short Communication: Evaluation of Water Quality and Survival Rate of Red Tilapia (Oreochromis niloticus) by Using Rice-Fish Culture System in Quarry Land of Clay. Biodiversitas, 20(2): 589–594. https://doi.org/10.13057/biodiv/d200240

Holanda, M., Ravagnan, E., Lara, G., Santana, G., Furtado, P., Cardozo, A., Wasielesky, W., and Poersch, L. H. 2023. Integrated Multitrophic Culture of Shrimp Litopenaeus vannamei and Tilapia Oreochromis niloticus in Biofloc System: A Pilot Scale Study. Frontiers in Marine Science, 10: 1–8. https://doi.org/10.3389/fmars.2023.1060846

Ikpeme, E., Ekerette, E., Udensi, O., and Ozoje, M. 2017. Assessment of Morphological Variation in Wild and Cultured Populations of Tilapia Fish (Oreochromis niloticus). Journal of Advances in Biology & Biotechnology, 13(2): 1–10. https://doi.org/10.9734/jabb/2017/33777

Juárez-Rosales, J., Ponce-Palafox, J. T., Román-Gutiérrez, A.D., Otazo-Sánchez, E.M., Pulido-Flores, G., and Castillo-Vargasmachuca, S.G. 2019. Effects of White Shrimp (Litopenaeus vannamei) and Tilapia Nilotica (Oreochromis niloticus) Var. Spring) in Monoculture and Co-Culture Systems on Water Quality Variables and Production in Brackish Low-Salinity Water Earthen Ponds During Rainy and Dry Season. Spanish Journal of Agricultural Research, 17(3). https://doi.org/10.5424/sjar/2019173-14938

Juárez-Rosales, J., Román-Gutiérrez, A.D., Otazo-Sánchez, E.M., Pulido-Flores, G., Esparza-Leal, H.M., Aragón-Noriega, E.A., and Seidavi, A. 2020. The Effect of Tilapia Oreochromis niloticus Addition on The Sediment of Brackish Low-Salinity Ponds to White Shrimp Penaeus vannamei Farming System During the Wet and Dry Season. Latin American Journal of Aquatic Research, 48(1): 7–14. https://doi.org/10.3856/vol48-issue1-fulltext-2365

Kari, Z.A., Wee, W., Abdul Hamid, N.K., Dawood, M.A.O., Azwanida Binti Zakaria, N.N., and Wei, L.S. 2022. The Roles of Polysaccharides in Tilapia Farming: A Review. Aquaculture and Fisheries. https://doi.org/ 10.1016/j.aaf.2022.09.005

KKP. 2022. Laporan Kinerja (LKj) Ditjen Perikanan Budidaya. Kementerian Kelautan dan Perikanan RI. Jakarta.

Knowler, D., Chopin, T., Martínez-Espiñeira, R., Neori, A., Nobre, A., Noce, A., and Reid, G. 2020. The Economics of Integrated Multi-Trophic Aquaculture: Where Are We Now and Where Do We Need To Go? Reviews in Aquaculture, 12(3): 1579–1594. https://doi.org/10.1111/raq.12399

Kwikiriza, G., Yegon, M.J., Byamugisha, N., Beingana, A., Atukwatse, F., Barekye, A., Nattabi, J.K., and Meimberg, H. 2023. Morphometric Variations of Nile Tilapia (Oreochromis niloticus) (Linnaeus, 1758) Local Strains Collected from Different Fish Farms in South Western Highland Agro-Ecological Zone (SWHAEZ), Uganda: Screening Strains for Aquaculture. Fishes, 8(4). https://doi.org/10.3390/fishes8040217

Lalramchhani, C., Paran, B.C., Shyne Anand, P.S., Ghoshal, T.K., Kumar, P., and Vijayan, K.K. 2020. Integrated Rearing System Approach in the Farming of Mud Crab, Shrimp, Fish, Oyster and Periphyton in Bracksihwater Pond. Aquaculture Research, 51(10): 4165–4172. https:// doi.org/10.1111/are.14758

Lawson, T.B. 1995. Fundamentals of Aquacultural Engineering. Chapman and Hall Publishers.

Li, F., Feng, J., Zhou, X., Xu, C., Haissam Jijakli, M., Zhang, W., and Fang, F. 2019. Impact of Rice-Fish/Shrimp Co-Culture on the N2O Emission and NH3 volatilization in Intensive Aquaculture Ponds. Sci. of the Tot. Env., 655: 284–291. https://doi.org/10.1016/j.scitotenv.2018. 10.440

Li, T., Zhang, B., Zhu, C., Su, J., Li, J., Chen, S., and Qin, J. 2021. Effects of an Ex Situ Shrimp-Rice Aquaponic System on the Water Quality of Aquaculture Ponds in the Pearl River estuary, China. Aquaculture, 545: 737179.https:// doi.org/10.1016/j.aquaculture.2021.737179

Lucas, J.S., Southgate, P.C., and Tucker, C.S. 2018. Aquaculture: Farming Aquatic Animals and Plants, 3rd Edition. John Wiley & Sons, New York.

Lugert, V., Thaller, G., Tetens, J., Schulz, C., and Krieter, J. 2016. A Review on Fish Growth Calculation: Multiple Functions in Fish Production and Their Specific Application. Reviews in Aquaculture, 8(1): 30–42. https://doi.org/10.1111/ raq.12071

Magbanua, T.O., and Ragaza, J.A., 2023. Growth and Whole-body Proximate Composition of Oreochromis niloticus Nile tilapia Fed Pea Meal: A Systematic Review and Meta-Analysis. Frontiers in Sustainable Food Systems, 7. https://doi.org/10.3389/fsufs.2023.1103263

Makeche, M.C., Nhiwatiwa, T., Ndebe, J., Mulavu, M., Khumalo, C.S., Simulundu, E., Changula, K., Chitanga, S., Mubemba, B., and Muleya, W. 2022. Characterisation of Oreochromis niloticus Fish Species of Lake Kariba, Zambia, Using Morphological, Meristic And Genetic Methods . Aquaculture, Fish and Fisheries, 2(2): 116–129. https://doi.org/10.1002/aff2.36

Mehar, M., Mekkawy, W., McDougall, C., and Benzie, J.A.H. 2023. Tilapia (Oreochromis niloticus) Trait Preferences By Women and Men Farmers in Jessore and Mymensingh districts of Bangladesh. Aquaculture, 562: 738799. https://doi.org/10.1016/j.aquaculture.2022.738799

Nassar, S.A., Hassan, A.G.A., Badran, M.F., and Abdel-Rahim, M.M. 2021. Effects of Salinity Level on Growth Performance, Feed Utilization, and Chromatic Deformity Of The Hybrid Red Tilapia, Oreochromis niloticus X Oreochromis. mossambicus. Egyptian Journal of Aquatic Biology and Fisheries, 25(2): 49–61. https://doi.org/10.21608/ ejabf.2021.158248

Nederlof, M A.J., Verdegem, M.C.J., Smaal, A.C., and Jansen, H.M. 2021. Nutrient Retention Efficiencies in Integrated Multi-Trophic Aquaculture. Reviews in Aquaculture, 1–19. https://doi.org/10.1111/raq.12645

Neto, R.M., and Ostrensky, A. 2015. Nutrient Load Estimation in the Waste of Nile Tilapia Oreochromis niloticus (L.) Reared in Cages in Tropical Climate Conditions. Aquaculture Research, 46(6): 1309–1322. https://doi.org/10.1111/ are.12280

Nuryanto, N., Afifah, D.N., Sulchan, M., Martosuyono, P., Ihsani, K., and Kurniastuti, P.L. 2022. Potential of Nile Tilapia (Oreochromis niloticus) as an Alternative Complementary Food Ingredient for Stunting Children. Open Access Macedonian Journal of Medical Sciences, 10(A): 1170–1177. https://doi.org/10.3889/oamjms.2022.9650

Pantjara, B., Sarijanah, A., and Hermawan, M. 2020. Improved Pond Productivity through Integrated Cultivation of Red Tilapia (Oreochromis niloticus), Tiger Shrimp (Penaeus monodon) and Seaweed (Gracilaria verrucosa) in Maros, South Sulawesi, Indonesia. IOP Conference Series: Earth and Environmental Science, 521(1). https://doi.org/ 10.1088/1755-1315/521/1/012001

Papageorgiou, N., Dimitriou, P.D., Chatzivasileiou, D., Tsapakis, M., and Karakassis, I. 2023. Can IMTA Provide Added Ecosystem Value Services in the Fish Farms of Greece? Frontiers in Marine Science. https://doi.org/ 10.3389/fmars.2022.1083099

Rejeki, S., Ariyati, R.W., and Widowati, L.L. 2016. Application of Integrated Multi Tropic Aquaculture Concept in An Abraded Brackish Water Pond. Jurnal Teknologi, 78(4–2): 227–232. https://doi.org/10.11113/jt.v78.8213

Romana-Eguia, M.R.R., Rutaquio, M.P., Gutierrez, R.C., and Salayo, N.D. 2021. Assessment of Tilapia–freshwater Prawn Co-Culture Schemes in Tanks and Lake-Based Cages for Increased Farm Production. Sustainability (Switzerland), 13(24): 1–17. https://doi.org/10.3390/ su132413574

Sri-uam, P., Donnuea, S., Powtongsook, S., and Pavasant, P. 2016. Integrated Multi-Trophic Recirculating Aquaculture System for Nile Tilapia Sustainability, 8(592): 1–15. https://doi.org/10.3390/ su8070592

Srivastava, A., Chun, S.J., Ko, S.R., Kim, J., Ahn, C.Y., and Oh, H.M. 2017. Floating Rice-Culture System for Nutrient Remediation and Feed Production in A Eutrophic Lake. Journal of Environmental Management, 203: 342–348. https://doi.org/10.1016/j.jenvman.2017.08.006

Sugiyono. 2022. Metode Penelitian Kuantitatif (Cetakan ke). CV Alfa Beta, Bandung.

Thomas, M., Pasquet, A., Aubin, J., Nahon, S., and Lecocq, T. 2021. When More is More: Taking Advantage of Species Diversity to Move Towards Sustainable Aquaculture. Biological Reviews, 96(2): 767–784. https://doi.org/ 10.1111/brv.12677

Weidner, J., Jensen, C.H., Giske, J., Eliassen, S., and Jørgensen, C. 2020. Hormones as Adaptive Control Systems In Juvenile Fish. Biology Open, 9(2). https://doi.org/10.1242/ bio.046144

Withyachumnarnkul, B. 2017. Salinity Tolerance in Nile Tilapia (Oreochromis niloticus). Prince of Songkla University.

Zhang, X., Zhang, Y., Zhang, Q., Liu, P., Guo, R., Jin, S., Liu, J., Chen, L., Ma, Z., and Ying, L. 2020. Evaluation and Analysis of Water Quality of Marine Aquaculture Area. International Journal of Environmental Research and Public Health, 17(4): 1–15. https://doi.org/10.3390/ijerph17041446

Zhao, Y., Zhang, C., Zhou, H., Song, L., Wang, J., and Zhao, J. 2020. Transcriptome Changes for Nile Tilapia (Oreochromis niloticus) in Response to Alkalinity Stress. Comparative Biochemistry and Physiology - Part D: Genomics and Proteomics, 33: 100651. https://doi.org/10.1016/ j.cbd.2019.100651




DOI: https://doi.org/10.29103/aa.v10i3.11752

Article Metrics

 Abstract Views : 103 times
 PDF Downloaded : 1 times

Refbacks

  • There are currently no refbacks.



Copyright (c) Acta Aquatica: Aquatic Sciences Journal   

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.