Klasifikasi Surat Laporan Kehilangan Kepolisian Menggunakan Algoritma K - Nearest Neighbor
DOI:
https://doi.org/10.29103/techsi.v10i2.900Abstract
Klasifikasi teks adalah proses pengelompokan dokumen ke dalam kategori atau kelas yang berbeda. Surat laporan kehilangan kepolisian memiliki bermacam - macam jenis, seperti: surat kehilangan Kartu Tanda Penduduk (KTP), surat kehilangan Surat Tanda Tamat Belajar (STTB) dan lain-lain. Klasifikasi surat laporan kehilangan kepolisian masih dilakukan secara manual, karena belum adanya sistem untuk mengklasifikasi surat tersebut. Klasifikasi surat manual memiliki keterbatasan alokasi ruang dan waktu. Untuk menyeselesaikan permasalahan tersebut, penelitian ini menawarkan implementasi algoritma k-Nearest Neighbor untuk mengklasifikasi surat laporan kehilangan kepolisian. Algoritma k-Nearest Neighbor adalah salah satu metode klasifikasi untuk data mining terkhusus text mining. Metode ini bekerja dengan mencari kedekatan jarak suatu data dengan data lain. Pembobotan term dilakukan dengan mencari TF-IDF (Term Frequency-Inverse Document Frequency). Arsip digital surat dibuat melalui proses scanning dan menyimpan isi utama surat dalam file teks. Dalam hal ini surat laporan kehilangan kepolisian digolongkan menjadi tiga kategori utama yaitu kartu, surat, dan sertifikat. Dari hasil pengujian klasifikasi pada 100 isi surat laporan kehilangan kepolisian, algoritma K-Nearest Neighbor dapat menghasilkan ratarata tingkat akurasi 91.75 %.
References
Joachims, T. 1997. A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for Text Categorization.
Proc of International Conference on Machine Learning
(ICML) 1997, USA, Pp. 143-151.
Vijayarani, S., & Janani, R. 2016. Text Mining: Open Source
Tokenization Tools - An Analysis. Advanced
Computational Intelligence: An International Journal
(ACII) 3(1), pp. 37-47.
Tala, F.Z. 2003. A Study of Stemming Effects on Information Retrieval in
Bahasa Indonesia. Tesis, Institute for Logic, Languange
and Computation: Universiteti van Amsterdam the
Netherlands.
Rivki, M. 2017. Implementasi Algoritma K-Nearest Neighbor dalam
Pengklasifikasian Follower Twitter yang Menggunakan
Bahasa Indonesia. Skripsi, Universitas Komputer
Indonesia.
Downloads
Published
Issue
Section
License
Authors retain copyright and grant the journal right of first publication and this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 that allows others to share the work with an acknowledgement of the works authorship and initial publication in this journal.
All articles in this journal may be disseminated by listing valid sources and the title of the article should not be omitted. The content of the article is liable to the author.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
In the dissemination of articles by the author must declare the TECHSI Journal as the first party to publish the article.