Nanoparticles: Properties, applications and toxicities

OKTAVIANI OKTAVIANI

Abstract


This review is provided a detailed overview of the synthesis, properties and applications of nanoparticles (NPs) exist in different forms. NPs are tiny materials having size ranges from 1 to 100 nm. They can be classified into different classes based on their properties, shapes or sizes. The different groups include fullerenes, metal NPs, ceramic NPs, and polymeric NPs. NPs possess unique physical and chemical properties due to their high surface area and nanoscale size. Their optical properties are reported to be dependent on the size, which imparts different colors due to absorption in the visible region. Their reactivity, toughness and other properties are also dependent on their unique size, shape and structure. Due to these characteristics, they are suitable candidates for various commercial and domestic applications, which include catalysis, imaging, medical applications, energy-based research, and environmental applications. Heavy metal NPs of lead, mercury and tin are reported to be so rigid and stable that their degradation is not easily achievable, which can lead to many environmental toxicities.

Keywords


Nanoparticles; Fullerenes; Optical; Plasmonic; Toxicity

References


Abd Ellah, N.H., Abouelmagd, S.A., 2016. Surface functionalization

of polymeric nanoparticles for tumor drug delivery: approaches

and challenges. Expert Opin. Drug Deliv. 1–14. http://dx.doi.org/

1080/17425247.2016.1213238.

Abouelmagd, S.A., Meng, F., Kim, B.-K., Hyun, H., Yeo, Y., 2016.

Tannic acid-mediated surface functionalization of polymeric

nanoparticles. ACS Biomater. Sci. Eng., 6b00497 http://dx.doi.

org/10.1021/acsbiomaterials.6b004.

Ahmed, S., Annu, S., Yudha, S.S., 2016. Biosynthesis of gold

nanoparticles: a green approach. J. Photochem. Photobiol. B: Biol.

, 141–153. http://dx.doi.org/10.1016/j.jphotobiol.2016.04.034.

Akhavan, O., Azimirad, R., Safa, S., Hasani, E., 2011. CuO/Cu(OH)2

hierarchical nanostructures as bactericidal photocatalysts. J.

Mater. Chem. 21, 9634. http://dx.doi.org/10.1039/c0jm04364h.

Alexis, F., Pridgen, E., Molnar, L.K., Farokhzad, O.C., 2008.

Factors affecting the clearance and biodistribution of polymeric

nanoparticles. Mol. Pharm. 5, 505–515. http://dx.doi.org/10.1021/

mp800051m.

Ali, A., Zafar, H., Zia, M., Ul Haq, I., Phull, A.R., Ali, J.S., Hussain,

A., 2016. Synthesis, characterization, applications, and challenges

of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 9, 49–67.

http://dx.doi.org/10.2147/NSA.S99986.

Ali, S., Khan, I., Khan, S.A., Sohail, M., Ahmed, R., Rehman, A.,

Ur Ansari, M.S., Morsy, M.A., 2017. Electrocatalytic performance

of Ni@Pt core–shell nanoparticles supported on carbon nanotubes

for methanol oxidation reaction. J. Electroanal. Chem. 795, 17–25.

http://dx.doi.org/10.1016/j.jelechem.2017.04.040.

Aqel, A., El-Nour, K.M.M.A., Ammar, R.A.A., Al-Warthan, A.,

Carbon nanotubes, science and technology part (I) structure,

synthesis and characterisation. Arab. J. Chem. 5, 1–23. http://dx.

doi.org/10.1016/j.arabjc.2010.08.022.

AshaRani, P.V., Low Kah Mun, G., Hande, M.P., Valiyaveettil, S.,

Cytotoxicity and genotoxicity of silver nanoparticles in

human cells. ACS Nano 3, 279–290. http://dx.doi.org/10.1021/

nn800596w.

Astefanei, A., Nu´n˜ez, O., Galceran, M.T., 2015. Characterisation and

determination of fullerenes: a critical review. Anal. Chim. Acta 882,

–21. http://dx.doi.org/10.1016/j.aca.2015.03.025.

Avasare, V., Zhang, Z., Avasare, D., Khan, I., Qurashi, A., 2015.

Room-temperature synthesis of TiO2 nanospheres and their solar

driven photoelectrochemical hydrogen production. Int. J. Energy

Res. 39, 1714–1719. http://dx.doi.org/10.1002/er.3372.

Bahadar, H., Maqbool, F., Niaz, K., Abdollahi, M., 2016. Toxicity of

nanoparticles and an overview of current experimental models.

Iran. Biomed. J. 20, 1–11. http://dx.doi.org/10.7508/

ibj.2016.01.001.

Barrak, H., Saied, T., Chevallier, P., Laroche, G., M’nif, A.,

Hamzaoui, A.H., 2016. Synthesis, characterization, and functionalization of ZnO nanoparticles by N-(trimethoxysilylpropyl)

Nanoparticles 927

ethylenediamine triacetic acid (TMSEDTA): investigation of the

interactions between phloroglucinol and ZnO@TMSEDTA. Arab.

J. Chem. http://dx.doi.org/10.1016/j.arabjc.2016.04.019.

Bello, S.A., Agunsoye, J.O., Hassan, S.B., 2015. Synthesis of coconut

shell nanoparticles via a top down approach: assessment of milling

duration on the particle sizes and morphologies of coconut shell

nanoparticles. Mater. Lett. http://dx.doi.org/10.1016/

j.matlet.2015.07.063.

Biswas, A., Bayer, I.S., Biris, A.S., Wang, T., Dervishi, E., Faupel, F.,

Advances in top–down and bottom–up surface nanofabrication: techniques, applications & future prospects. Adv. Coll.

Interface. Sci. 170, 2–27. http://dx.doi.org/10.1016/

j.cis.2011.11.001.

Calvo, P., Remuoon-Lopez, C., Vila-Jato, J.L., Alonso, M.J., 1997.

Novel hydrophilic chitosan-polyethylene oxide nanoparticles as

protein carriers. J. Appl. Polym. Sci. 63, 125–132. http://dx.doi.org/

1002/(SICI)1097-4628(19970103)63:1*125::AID-APP13*3.0.

CO;2-4.

Cao, Y.C., 2002. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 80 (297), 1536–1540.

http://dx.doi.org/10.1126/science.297.5586.1536.

Chen, C., Xing, G., Wang, J., Zhao, Y., Li, B., Tang, J., Jia, G.,

Wang, T., Sun, J., Xing, L., Yuan, H., Gao, Y., Meng, H., Chen,

Z., Zhao, F., Chai, Z., Fang, X., 2005. Multihydroxylated [Gd@C

(OH) 22 ] n nanoparticles: antineoplastic activity of high

efficiency and low toxicity. Nano Lett. 5, 2050–2057. http://dx.doi.

org/10.1021/nl051624b.

Cushing, B.L., Kolesnichenko, V.L., O’Connor, C.J., 2004. Recent

advances in the liquid-phase syntheses of inorganic nanoparticles.

Chem. Rev. 104, 3893–3946. http://dx.doi.org/10.1021/cr030027b.

Dablemont, C., Lang, P., Mangeney, C., Piquemal, J.-Y., Petkov, V.,

Herbst, F., Viau, G., 2008. FTIR and XPS study of Pt nanoparticle

functionalization and interaction with alumina. Langmuir 24,

–5841. http://dx.doi.org/10.1021/la7028643.

Dong, H., Wen, B., Melnik, R., 2014. Relative importance of grain

boundaries and size effects in thermal conductivity of nanocrystalline materials. Sci. Rep. 4, 7037. http://dx.doi.org/10.1038/

srep07037.

Dreaden, E.C., Alkilany, A.M., Huang, X., Murphy, C.J., El-Sayed,

M.A., 2012. The golden age: gold nanoparticles for biomedicine.

Chem. Soc. Rev. 41, 2740–2779. http://dx.doi.org/10.1039/

C1CS15237H.

Elliott, J.A., Shibuta, Y., Amara, H., Bichara, C., Neyts, E.C., 2013.

Atomistic modelling of CVD synthesis of carbon nanotubes and

graphene. Nanoscale 5, 6662. http://dx.doi.org/10.1039/c3nr01925j.

Emery, A.A., Saal, J.E., Kirklin, S., Hegde, V.I., Wolverton, C.,

High-throughput computational screening of perovskites for

thermochemical water splitting applications. Chem. Mater. 28.

http://dx.doi.org/10.1021/acs.chemmater.6b01182.

Eustis, S., El-Sayed, M.A., 2006. Why gold nanoparticles are more

precious than pretty gold: noble metal surface plasmon resonance

and its enhancement of the radiative and nonradiative properties of

nanocrystals of different shapes. Chem. Soc. Rev. 35, 209–217.

http://dx.doi.org/10.1039/B514191E.

Fagerlund, G., 1973. Determination of specific surface by the BET

method. Mate´riaux Constr. 6, 239–245. http://dx.doi.org/10.1007/

BF02479039.

Faivre, D., Bennet, M., 2016. Materials science: magnetic nanoparticles line up. Nature 535, 235–236. http://dx.doi.org/10.1038/

a.

Fang, X.-Q., Liu, J.-X., Gupta, V., 2013. Fundamental formulations

and recent achievements in piezoelectric nano-structures: a review.

Nanoscale 5, 1716. http://dx.doi.org/10.1039/c2nr33531j.

Ferreira, A.J., Cemlyn-Jones, J., Robalo Cordeiro, C., 2013.

Nanoparticles, nanotechnology and pulmonary nanotoxicology.

Rev. Port. Pneumol. 19, 28–37. http://dx.doi.org/10.1016/j.

rppneu.2012.09.003.

Filipe, V., Hawe, A., Jiskoot, W., 2010. Critical evaluation of

nanoparticle tracking analysis (NTA) by nanosight for the

measurement of nanoparticles and protein aggregates. Pharm.

Res. 27, 796–810. http://dx.doi.org/10.1007/s11095-010-0073-2.

Ganesh, M., Hemalatha, P., Peng, M.M., Jang, H.T., 2017. One pot

synthesized Li, Zr doped porous silica nanoparticle for low

temperature CO2 adsorption. Arab. J. Chem. 10, S1501–S1505.

Garrigue, P., Delville, M.-H., Labruge`re, C., Cloutet, E., Kulesza, P.

J., Morand, J.P., Kuhn, A., 2004. Top–down approach for the

preparation of colloidal carbon nanoparticles. Chem. Mater. 16,

–2986. http://dx.doi.org/10.1021/cm049685i.

Gawande, M.B., Goswami, A., Felpin, F.-X., Asefa, T., Huang, X.,

Silva, R., Zou, X., Zboril, R., Varma, R.S., 2016. Cu and

Cu-based nanoparticles: synthesis and applications in catalysis.

Chem. Rev. 116, 3722–3811. http://dx.doi.org/10.1021/acs.

chemrev.5b00482.

Golobicˇ, M., Jemec, A., Drobne, D., Romih, T., Kasemets, K.,

Kahru, A., 2012. Upon exposure to Cu nanoparticles, accumulation of copper in the isopod Porcellio scaber is due to the dissolved

cu ions inside the digestive tract. Environ. Sci. Technol. 46, 12112–

http://dx.doi.org/10.1021/es3022182.

Greeley, J., Markovic, N.M., 2012. The road from animal electricity

to green energy: combining experiment and theory in electrocatalysis. Energy Environ. Sci. 5. http://dx.doi.org/10.1039/c2ee21754f.

Gross, J., Sayle, S., Karow, A.R., Bakowsky, U., Garidel, P., 2016.

Nanoparticle tracking analysis of particle size and concentration

detection in suspensions of polymer and protein samples: Influence

of experimental and data evaluation parameters. Eur. J. Pharm.

Biopharm. 104, 30–41. http://dx.doi.org/10.1016/j.

ejpb.2016.04.013.

Gujrati, M., Malamas, A., Shin, T., Jin, E., Sun, Y., Lu, Z.-R., 2014.

Multifunctional cationic lipid-based nanoparticles facilitate endosomal escape and reduction-triggered cytosolic siRNA release.

Mol. Pharm. 11, 2734–2744. http://dx.doi.org/10.1021/mp400787s.

Guo, D., Xie, G., Luo, J., 2014. Mechanical properties of nanoparticles: basics and applications. J. Phys. D Appl. Phys. 47, 13001.

http://dx.doi.org/10.1088/0022-3727/47/1/013001.

Gupta, K., Singh, R.P., Pandey, A., Pandey, A., 2013. Photocatalytic

antibacterial performance of TiO2 and Ag-doped TiO2 against S.

aureus. P. aeruginosa and E. coli. Beilstein J. Nanotechnol. 4, 345–

http://dx.doi.org/10.3762/bjnano.4.40.

Hajipour, M.J., Fromm, K.M., Ashkarran, A. Akbar, de Aberasturi,

D. Jimenez, de Larramendi, I.R., Rojo, T., Serpooshan, V., Parak,

W.J., Mahmoudi, M., 2012. Antibacterial properties of nanoparticles. Trends Biotechnol. 30, 499–511. http://dx.doi.org/10.1016/j.

tibtech.2012.06.004.

Handy, R.D., von der Kammer, F., Lead, J.R., Hassello¨v, M., Owen,

R., Crane, M., 2008. The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17, 287–314. http://dx.doi.

org/10.1007/s10646-008-0199-8.

Hisatomi, T., Kubota, J., Domen, K., 2014. Recent advances in

semiconductors for photocatalytic and photoelectrochemical water

splitting. Chem. Soc. Rev. 43, 7520–7535. http://dx.doi.org/

1039/C3CS60378D.

Holzinger, M., Le Goff, A., Cosnier, S., 2014. Nanomaterials for

biosensing applications: a review. Front. Chem. 2, 63. http://dx.doi.

org/10.3389/fchem.2014.00063.

Ibrahim, K.S., 2013. Carbon nanotubes-properties and applications:

a review. Carbon Lett. 14, 131–144. http://dx.doi.org/10.5714/

CL.2013.14.3.131.

Ingham, B., 2015. X-ray scattering characterisation of nanoparticles.

Crystallogr. Rev. 21, 229–303. http://dx.doi.org/10.1080/

X.2015.1024114.

Iqbal, N., Khan, I., Yamani, Z.H., Qurashi, A., 2016. Sonochemical

assisted solvothermal synthesis of gallium oxynitride nanosheets

and their solar-driven photoelectrochemical water-splitting applications. Sci. Rep. 6, 32319. http://dx.doi.org/10.1038/srep32319.

I. Khan et al.

Iravani, S., 2011. Green synthesis of metal nanoparticles using plants.

Green Chem. 13, 2638. http://dx.doi.org/10.1039/c1gc15386b.

Jain, P.K., Lee, K.S., El-Sayed, I.H., El-Sayed, M.A., 2006. Calculated absorption and scattering properties of gold nanoparticles of

different size, shape, and composition: applications in biological

imaging and biomedicine. J. Phys. Chem. B 110, 7238–7248. http://

dx.doi.org/10.1021/jp057170o.

Kestens, V., Roebben, G., Herrmann, J., Ja¨mting, A˚ ., Coleman, V.,

Minelli, C., Clifford, C., De Temmerman, P.-J., Mast, J., Junjie, L.,

Babick, F., Co¨lfen, H., Emons, H., 2016. Challenges in the size

analysis of a silica nanoparticle mixture as candidate certified

reference material. J. Nanopart. Res. 18, 171. http://dx.doi.org/

1007/s11051-016-3474-2.

Khan, I., Abdalla, A., Qurashi, A., 2017a. Synthesis of hierarchical

WO3 and Bi2O3/WO3 nanocomposite for solar-driven water

splitting applications. Int. J. Hydrogen Energy 42, 3431–3439.

http://dx.doi.org/10.1016/j.ijhydene.2016.11.105.

Khan, I., Ali, S., Mansha, M., Qurashi, A., 2017b. Sonochemical

assisted hydrothermal synthesis of pseudo-flower shaped Bismuth

vanadate (BiVO4) and their solar-driven water splitting application.

Ultrason. Sonochem. 36, 386–392. http://dx.doi.org/10.1016/j.

ultsonch.2016.12.014.

Khan, I., Ibrahim, A.A.M., Sohail, M., Qurashi, A., 2017c. Sonochemical assisted synthesis of RGO/ZnO nanowire arrays for

photoelectrochemical water splitting. Ultrason. Sonochem. 37,

–675. http://dx.doi.org/10.1016/j.ultsonch.2017.02.029.

Khlebtsov, N., Dykman, L., 2011. Biodistribution and toxicity of

engineered gold nanoparticles: a review of in vitro and in vivo

studies. Chem. Soc. Rev. 40, 1647–1671. http://dx.doi.org/10.1039/

C0CS00018C.

Khlebtsov, N., Dykman, L., 2010. Plasmonic nanoparticles. pp. 37–

http://dx.doi.org/10.1201/9781439806296-c2.

Khlebtsov, N.G., Dykman, L.A., 2010b. Optical properties and

biomedical applications of plasmonic nanoparticles. J. Quant.

Spectrosc. Radiat. Transf. 111, 1–35. http://dx.doi.org/10.1016/j.

jqsrt.2009.07.012.

Kosmala, A., Wright, R., Zhang, Q., Kirby, P., 2011. Synthesis of

silver nano particles and fabrication of aqueous Ag inks for inkjet

printing. Mater. Chem. Phys. 129, 1075–1080. http://dx.doi.org/

1016/j.matchemphys.2011.05.064.

Kot, M., Major, Ł., Lackner, J.M., Chronowska-Przywara, K.,

Janusz, M., Rakowski, W., 2016. Mechanical and tribological

properties of carbon-based graded coatings. J. Nanomater. 2016,

–14. http://dx.doi.org/10.1155/2016/8306345.

Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst,

L., Muller, R.N., 2010. Magnetic iron oxide nanoparticles:

synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 110. http://dx.doi.

org/10.1021/cr900197g, pp. 2574–2574.

Lee, J.E., Lee, N., Kim, T., Kim, J., Hyeon, T., 2011. Multifunctional

mesoporous silica nanocomposite nanoparticles for theranostic

applications. Acc. Chem. Res. 44, 893–902. http://dx.doi.org/

1021/ar2000259.

Lee, S., Choi, S.U.-S., Li, S., Eastman, J.A., 1999. Measuring thermal

conductivity of fluids containing oxide nanoparticles. J. Heat

Transfer 121, 280–285. http://dx.doi.org/10.1115/1.2825978.

Lei, Y.-M., Huang, W.-X., Zhao, M., Chai, Y.-Q., Yuan, R., Zhuo,

Y., 2015. Electrochemiluminescence resonance energy transfer

system: mechanism and application in ratiometric aptasensor for

lead ion. Anal. Chem. 87, 7787–7794. http://dx.doi.org/10.1021/

acs.analchem.5b01445.

Li, D., Baydoun, H., Verani, C.N., Brock, S.L., 2016. Efficient water

oxidation using CoMnP nanoparticles. J. Am. Chem. Soc. 138,

–4009. http://dx.doi.org/10.1021/jacs.6b01543.

Lin, G., Zhang, Q., Lin, X., Zhao, D., Jia, R., Gao, N., Zuo, Z., Xu,

X., Liu, D., 2015. Enhanced photoluminescence of gallium

phosphide by surface plasmon resonances of metallic nanoparticles.

RSC Adv. 5, 48275–48280. http://dx.doi.org/10.1039/

C5RA07368E.

Liu, D., Li, C., Zhou, F., Zhang, T., Zhang, H., Li, X., Duan, G.,

Cai, W., Li, Y., 2015a. Rapid synthesis of monodisperse Au

nanospheres through a laser irradiation -induced shape conversion,

self-assembly and their electromagnetic coupling SERS enhancement. Sci. Rep. 5, 7686. http://dx.doi.org/10.1038/srep07686.

Liu, D., Zhou, W., Wu, J., 2016. CuO-CeO2/ZSM-5 composites for

reactive adsorption of hydrogen sulphide at high temperature. Can.

J. Chem. Eng. 94, 2276–2281. http://dx.doi.org/10.1002/cjce.22613.

Liu, J., Liu, Y., Liu, N., Han, Y., Zhang, X., Huang, H., Lifshitz, Y.,

Lee, S.-T., Zhong, J., Kang, Z., 2015b. Metal-free efficient

photocatalyst for stable visible water splitting via a two-electron

pathway. Science 80 (347), 970–974. http://dx.doi.org/

1126/science.aaa3145.

Loureiro, A., Azoia, N.G., Gomes, A.C., Cavaco-Paulo, A., 2016.

Albumin-based nanodevices as drug carriers. Curr. Pharm. Des. 22,

–1390.

Lykhach, Y., Kozlov, S.M., Ska´la, T., Tovt, A., Stetsovych, V., Tsud,

N., Dvorˇa´k, F., Joha´nek, V., Neitzel, A., Myslivecˇek, J., Fabris, S.,


Article Metrics

 Abstract Views : 1121 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Jurnal Latihan

License URL: https://creativecommons.org