Simulasi Proses Pembakaran Pada Motor Bakar Spark Ignition dengan Menggunakan Model Kuasi Dimensi

A Asnawi

Abstract


Sebuah model quasi-dimensional telah dibangun untuk mensimulasikan reaksi gas didalam silinder, model ini juga dapat diperluas untuk menganalisis unjuk kerja dan emisi mesin. Unjuk kerja mesin dan emisi yang dihasilkan sangat tergantung pada proses berlangsungnya pembakaran, dimana energi termal dari reaksi pembakaran dapat dimanfaatkan secara optimal menjadi energi mekanik. Model yang dibangun telah divalidasikan dan menunjukkan kesepakatan yang baik antara data prediksi dan eksperimental. Optimasi dilakukan untuk bahan bakar campuran antara CNG dan hidrogen dengan fraksi volume hidrogen 0-40% dengan interval 10%, masing-masing campuran dioperasikan pada variasi fuel-air equivalence ratio. Hasil simulasi diperoleh, pengayaan hidrogen dapat mempersingkat durasi pembakaran serta dapat mengstabilkan pembakaran pada campuran dibawah stoikiometri sehingga memberikan dampak terhadap peningkatan tekanan silinder selama proses pembakaran. Hal ini memungkinkan mesin beroperasi pada campuran lebih kurus dengan efisiensi termal yang tinggi serta dapat mengurangi polusi

Full Text:

PDF

References


Das, L.M., Hydrogen engines: A view of the past and a look into the future. International Journal of Hydrogen Energy, 1990. 15(6): p. 425-443.

Das, L.M., On-board hydrogen storage systems for automotive application. International Journal of Hydrogen Energy, 1996. 21(9): p. 789-800.

Yang, J., dkk., High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. Chemical Society Reviews, 2010. 39(2): p. 656-675.

Akif Ceviz, M., dkk., Engine performance, exhaust emissions, and cyclic variations in a lean-burn SI engine fueled by gasoline–hydrogen blends. Applied Thermal Engineering, 2012. 36(0): p. 314-324.

Kim, K., dkk., Effect of natural gas composition on the performance of a CNG engine. Oil and Gas Science and Technology - Rev. IFP, 2009. 64(2): p. 199-206.

Heywood, J.B., Internal Combustion Engine Fundamentals. 1988, New York: McGraw-Hill Book Company.

Gatowski, J.A., J.B. Heywood, dan C. Deleplace, Flame photographs in a spark-ignition engine. Combustion and Flame, 1984. 56(1): p. 71-81.

Bayraktar, H., Mathematical modeling of spark-ignition engine cycles. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2003. 25(7): p. 651 - 666.

Bayraktar, H. dan O. Durgun, Development of an empirical correlation for combustion durations in spark ignition engines. Energy Conversion and Management, 2004. 45(9-10): p. 1419-1431.

Bayraktar, H., Theoretical investigation of flame propagation process in an SI engine running on gasoline-ethanol blends. Renewable Energy, 2007. 32(5): p. 758-771.

Ibrahim, A. dan S. Bari, Optimization of a natural gas SI engine employing EGR strategy using a two-zone combustion model. Fuel, 2008. 87(10-11): p. 1824-1834.

Bilgin, A., Geometric features of the flame propagation process for an SI engine having dual-ignition system. INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2002.

Huang, Z., dkk., Combustion characteristics of a direct-injection engine fueled with natural gas-hydrogen blends under different ignition timings. Fuel, 2007. 86(3): p. 381-387.

Chen, Z., Effects of hydrogen addition on the propagation of spherical methane/air flames: A computational study. International Journal of Hydrogen Energy, 2009. 34(15): p. 6558-6567.

Ferguson, C.R., Internal Combustion Engine, Applied Thermosciences. 1986: John Willy & Sons.

Rakopoulos, C.D. dan C.N. Michos, Development and validation of a multi-zone combustion model for performance and nitric oxide formation in syngas fueled spark ignition engine. Energy Conversion and Management, 2008. 49(10): p. 2924-2938.

Rakopoulos, C.D. dan C.N. Michos, Quasi-dimensional, multi-zone combustion modelling of turbulent entrainment and flame stretch for a spark ignition engine fuelled with hydrogen-enriched biogas. International Journal of Vehicle Design, 2009. 49(1): p. 3-51.

Pulkrabek, W.W., Engineering fundamentals of the internal combustion engine. 2nd ed. 2004, Upper Saddle River, N.J.: Pearson Prentice Hall. xxiii, 478 p.

Ganesan, V., Internal Combustion Engines. 2nd ed, ed. I. Edition. 2004, Asia: McGraw-Hill Education. 777.

Borman, G.L. dan K.W. Ragland, Combustion Engineering. 1998, United States of America: McGraw-Hill.

Tinaut, F.V., dkk., Method for predicting the performance of an internal combustion engine fuelled by producer gas and other low heating value gases. Fuel Processing Technology, 2006. 87(2): p. 135-142.

Blizard, N.C. dan J.C. Keck, Experimental and theoretical investigation of turbulent burning model for internal combustion engines. SAE technical paper, 1974.

Tabaczynski, R.J., F.H. Trinker, dan B.A.S. Shannon, Further refinement and validation of a turbulent flame propagation model for spark-ignition engines. Combustion and Flame, 1980. 39(2): p. 111-121.

Verhelst, S. dan C.G.W. Sheppard, Multi-zone thermodynamic modelling of spark-ignition engine combustion - An overview. Energy Conversion and Management, 2009. 50(5): p. 1326-1335.

Tabaczynski, R.J., C.R. Ferguson, dan K. Radhakrishnan, A turbulent entrainment model for spark-ignition engine combustion. SAE technical paper, 1977.

Aghdam, E.A., dkk., Study of cyclic variation in an SI engine using quasi-dimensional combustion model, in Modeling of SI and Diesel Engines, 2007, W. Dai, dkk., Editors. 2007, SAE International: USA. p. 249-263.

Ferguson, C.R. dan A.T. Kirkpatrick, Internal Combustion Engines, Applied Thermosciences. 2nd ed. 2001: Wiley.

Ma, F., dkk., Development and validation of a quasi-dimensional combustion model for SI engines fuelled by HCNG with variable hydrogen fractions. International Journal of Hydrogen Energy, 2008. 33(18): p. 4863-4875.

Keck, J.C., Turbulent flame structure and speed in spark-ignition engines. Symposium (International) on Combustion, 1982. 19(1): p. 1451-1466.

Merker, G.P., dkk., Simulating Combustion. Simulation of combustion and pollutant formation for engine-development. 2006, Verlag Berlin Heidelberg: Springer.

Liao, S.Y., dkk., Measurements of markstein numbers and laminar burning velocities for natural gas−air mixtures. Energy and Fuels, 2004. 18(2): p. 316-326.

Liao, S.Y., dkk., Measurements of Markstein numbers and laminar burning velocities for liquefied petroleum gas-air mixtures. Fuel, 2004. 83(10): p. 1281-1288.

Liao, S.Y., D.M. Jiang, dan Q. Cheng, Determination of laminar burning velocities for natural gas. Fuel, 2004. 83(9): p. 1247-1250.

Liao, S.Y., dkk., Approximation of flammability region for natural gas-air-diluent mixture. Journal of Hazardous Materials, 2005. 125(1-3): p. 23-28.

Ibrahim, A. dan S. Bari, A comparison between EGR and lean-burn strategies employed in a natural gas SI engine using a two-zone combustion model. Energy Conversion and Management, 2009. 50(12): p. 3129-3139.

Verhelst, S., dkk., Laminar and unstable burning velocities and Markstein lengths of hydrogen-air mixtures at engine-like conditions. Proceedings of the Combustion Institute, 2005. 30(1): p. 209-216.

Verhelst, S. dan R. Sierens, A quasi-dimensional model for the power cycle of a hydrogen-fuelled ICE. International Journal of Hydrogen Energy, 2007. 32(15): p. 3545-3554.




DOI: https://doi.org/10.29103/mjmst.v2i1.10924

Article Metrics

 Abstract Views : 134 times
 PDF Downloaded : 11 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 A Asnawi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.