Nanoparticles: Properties, applications and toxicities
Abstract
Keywords
References
Abd Ellah, N.H., Abouelmagd, S.A., 2016. Surface functionalization
of polymeric nanoparticles for tumor drug delivery: approaches
and challenges. Expert Opin. Drug Deliv. 1–14. http://dx.doi.org/
1080/17425247.2016.1213238.
Abouelmagd, S.A., Meng, F., Kim, B.-K., Hyun, H., Yeo, Y., 2016.
Tannic acid-mediated surface functionalization of polymeric
nanoparticles. ACS Biomater. Sci. Eng., 6b00497 http://dx.doi.
org/10.1021/acsbiomaterials.6b004.
Ahmed, S., Annu, S., Yudha, S.S., 2016. Biosynthesis of gold
nanoparticles: a green approach. J. Photochem. Photobiol. B: Biol.
, 141–153. http://dx.doi.org/10.1016/j.jphotobiol.2016.04.034.
Akhavan, O., Azimirad, R., Safa, S., Hasani, E., 2011. CuO/Cu(OH)2
hierarchical nanostructures as bactericidal photocatalysts. J.
Mater. Chem. 21, 9634. http://dx.doi.org/10.1039/c0jm04364h.
Alexis, F., Pridgen, E., Molnar, L.K., Farokhzad, O.C., 2008.
Factors affecting the clearance and biodistribution of polymeric
nanoparticles. Mol. Pharm. 5, 505–515. http://dx.doi.org/10.1021/
mp800051m.
Ali, A., Zafar, H., Zia, M., Ul Haq, I., Phull, A.R., Ali, J.S., Hussain,
A., 2016. Synthesis, characterization, applications, and challenges
of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 9, 49–67.
http://dx.doi.org/10.2147/NSA.S99986.
Ali, S., Khan, I., Khan, S.A., Sohail, M., Ahmed, R., Rehman, A.,
Ur Ansari, M.S., Morsy, M.A., 2017. Electrocatalytic performance
of Ni@Pt core–shell nanoparticles supported on carbon nanotubes
for methanol oxidation reaction. J. Electroanal. Chem. 795, 17–25.
http://dx.doi.org/10.1016/j.jelechem.2017.04.040.
Aqel, A., El-Nour, K.M.M.A., Ammar, R.A.A., Al-Warthan, A.,
Carbon nanotubes, science and technology part (I) structure,
synthesis and characterisation. Arab. J. Chem. 5, 1–23. http://dx.
doi.org/10.1016/j.arabjc.2010.08.022.
AshaRani, P.V., Low Kah Mun, G., Hande, M.P., Valiyaveettil, S.,
Cytotoxicity and genotoxicity of silver nanoparticles in
human cells. ACS Nano 3, 279–290. http://dx.doi.org/10.1021/
nn800596w.
Astefanei, A., Nu´n˜ez, O., Galceran, M.T., 2015. Characterisation and
determination of fullerenes: a critical review. Anal. Chim. Acta 882,
–21. http://dx.doi.org/10.1016/j.aca.2015.03.025.
Avasare, V., Zhang, Z., Avasare, D., Khan, I., Qurashi, A., 2015.
Room-temperature synthesis of TiO2 nanospheres and their solar
driven photoelectrochemical hydrogen production. Int. J. Energy
Res. 39, 1714–1719. http://dx.doi.org/10.1002/er.3372.
Bahadar, H., Maqbool, F., Niaz, K., Abdollahi, M., 2016. Toxicity of
nanoparticles and an overview of current experimental models.
Iran. Biomed. J. 20, 1–11. http://dx.doi.org/10.7508/
ibj.2016.01.001.
Barrak, H., Saied, T., Chevallier, P., Laroche, G., M’nif, A.,
Hamzaoui, A.H., 2016. Synthesis, characterization, and functionalization of ZnO nanoparticles by N-(trimethoxysilylpropyl)
Nanoparticles 927
ethylenediamine triacetic acid (TMSEDTA): investigation of the
interactions between phloroglucinol and ZnO@TMSEDTA. Arab.
J. Chem. http://dx.doi.org/10.1016/j.arabjc.2016.04.019.
Bello, S.A., Agunsoye, J.O., Hassan, S.B., 2015. Synthesis of coconut
shell nanoparticles via a top down approach: assessment of milling
duration on the particle sizes and morphologies of coconut shell
nanoparticles. Mater. Lett. http://dx.doi.org/10.1016/
j.matlet.2015.07.063.
Biswas, A., Bayer, I.S., Biris, A.S., Wang, T., Dervishi, E., Faupel, F.,
Advances in top–down and bottom–up surface nanofabrication: techniques, applications & future prospects. Adv. Coll.
Interface. Sci. 170, 2–27. http://dx.doi.org/10.1016/
j.cis.2011.11.001.
Calvo, P., Remuoon-Lopez, C., Vila-Jato, J.L., Alonso, M.J., 1997.
Novel hydrophilic chitosan-polyethylene oxide nanoparticles as
protein carriers. J. Appl. Polym. Sci. 63, 125–132. http://dx.doi.org/
1002/(SICI)1097-4628(19970103)63:1*125::AID-APP13*3.0.
CO;2-4.
Cao, Y.C., 2002. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 80 (297), 1536–1540.
http://dx.doi.org/10.1126/science.297.5586.1536.
Chen, C., Xing, G., Wang, J., Zhao, Y., Li, B., Tang, J., Jia, G.,
Wang, T., Sun, J., Xing, L., Yuan, H., Gao, Y., Meng, H., Chen,
Z., Zhao, F., Chai, Z., Fang, X., 2005. Multihydroxylated [Gd@C
(OH) 22 ] n nanoparticles: antineoplastic activity of high
efficiency and low toxicity. Nano Lett. 5, 2050–2057. http://dx.doi.
org/10.1021/nl051624b.
Cushing, B.L., Kolesnichenko, V.L., O’Connor, C.J., 2004. Recent
advances in the liquid-phase syntheses of inorganic nanoparticles.
Chem. Rev. 104, 3893–3946. http://dx.doi.org/10.1021/cr030027b.
Dablemont, C., Lang, P., Mangeney, C., Piquemal, J.-Y., Petkov, V.,
Herbst, F., Viau, G., 2008. FTIR and XPS study of Pt nanoparticle
functionalization and interaction with alumina. Langmuir 24,
–5841. http://dx.doi.org/10.1021/la7028643.
Dong, H., Wen, B., Melnik, R., 2014. Relative importance of grain
boundaries and size effects in thermal conductivity of nanocrystalline materials. Sci. Rep. 4, 7037. http://dx.doi.org/10.1038/
srep07037.
Dreaden, E.C., Alkilany, A.M., Huang, X., Murphy, C.J., El-Sayed,
M.A., 2012. The golden age: gold nanoparticles for biomedicine.
Chem. Soc. Rev. 41, 2740–2779. http://dx.doi.org/10.1039/
C1CS15237H.
Elliott, J.A., Shibuta, Y., Amara, H., Bichara, C., Neyts, E.C., 2013.
Atomistic modelling of CVD synthesis of carbon nanotubes and
graphene. Nanoscale 5, 6662. http://dx.doi.org/10.1039/c3nr01925j.
Emery, A.A., Saal, J.E., Kirklin, S., Hegde, V.I., Wolverton, C.,
High-throughput computational screening of perovskites for
thermochemical water splitting applications. Chem. Mater. 28.
http://dx.doi.org/10.1021/acs.chemmater.6b01182.
Eustis, S., El-Sayed, M.A., 2006. Why gold nanoparticles are more
precious than pretty gold: noble metal surface plasmon resonance
and its enhancement of the radiative and nonradiative properties of
nanocrystals of different shapes. Chem. Soc. Rev. 35, 209–217.
http://dx.doi.org/10.1039/B514191E.
Fagerlund, G., 1973. Determination of specific surface by the BET
method. Mate´riaux Constr. 6, 239–245. http://dx.doi.org/10.1007/
BF02479039.
Faivre, D., Bennet, M., 2016. Materials science: magnetic nanoparticles line up. Nature 535, 235–236. http://dx.doi.org/10.1038/
a.
Fang, X.-Q., Liu, J.-X., Gupta, V., 2013. Fundamental formulations
and recent achievements in piezoelectric nano-structures: a review.
Nanoscale 5, 1716. http://dx.doi.org/10.1039/c2nr33531j.
Ferreira, A.J., Cemlyn-Jones, J., Robalo Cordeiro, C., 2013.
Nanoparticles, nanotechnology and pulmonary nanotoxicology.
Rev. Port. Pneumol. 19, 28–37. http://dx.doi.org/10.1016/j.
rppneu.2012.09.003.
Filipe, V., Hawe, A., Jiskoot, W., 2010. Critical evaluation of
nanoparticle tracking analysis (NTA) by nanosight for the
measurement of nanoparticles and protein aggregates. Pharm.
Res. 27, 796–810. http://dx.doi.org/10.1007/s11095-010-0073-2.
Ganesh, M., Hemalatha, P., Peng, M.M., Jang, H.T., 2017. One pot
synthesized Li, Zr doped porous silica nanoparticle for low
temperature CO2 adsorption. Arab. J. Chem. 10, S1501–S1505.
Garrigue, P., Delville, M.-H., Labruge`re, C., Cloutet, E., Kulesza, P.
J., Morand, J.P., Kuhn, A., 2004. Top–down approach for the
preparation of colloidal carbon nanoparticles. Chem. Mater. 16,
–2986. http://dx.doi.org/10.1021/cm049685i.
Gawande, M.B., Goswami, A., Felpin, F.-X., Asefa, T., Huang, X.,
Silva, R., Zou, X., Zboril, R., Varma, R.S., 2016. Cu and
Cu-based nanoparticles: synthesis and applications in catalysis.
Chem. Rev. 116, 3722–3811. http://dx.doi.org/10.1021/acs.
chemrev.5b00482.
Golobicˇ, M., Jemec, A., Drobne, D., Romih, T., Kasemets, K.,
Kahru, A., 2012. Upon exposure to Cu nanoparticles, accumulation of copper in the isopod Porcellio scaber is due to the dissolved
cu ions inside the digestive tract. Environ. Sci. Technol. 46, 12112–
http://dx.doi.org/10.1021/es3022182.
Greeley, J., Markovic, N.M., 2012. The road from animal electricity
to green energy: combining experiment and theory in electrocatalysis. Energy Environ. Sci. 5. http://dx.doi.org/10.1039/c2ee21754f.
Gross, J., Sayle, S., Karow, A.R., Bakowsky, U., Garidel, P., 2016.
Nanoparticle tracking analysis of particle size and concentration
detection in suspensions of polymer and protein samples: Influence
of experimental and data evaluation parameters. Eur. J. Pharm.
Biopharm. 104, 30–41. http://dx.doi.org/10.1016/j.
ejpb.2016.04.013.
Gujrati, M., Malamas, A., Shin, T., Jin, E., Sun, Y., Lu, Z.-R., 2014.
Multifunctional cationic lipid-based nanoparticles facilitate endosomal escape and reduction-triggered cytosolic siRNA release.
Mol. Pharm. 11, 2734–2744. http://dx.doi.org/10.1021/mp400787s.
Guo, D., Xie, G., Luo, J., 2014. Mechanical properties of nanoparticles: basics and applications. J. Phys. D Appl. Phys. 47, 13001.
http://dx.doi.org/10.1088/0022-3727/47/1/013001.
Gupta, K., Singh, R.P., Pandey, A., Pandey, A., 2013. Photocatalytic
antibacterial performance of TiO2 and Ag-doped TiO2 against S.
aureus. P. aeruginosa and E. coli. Beilstein J. Nanotechnol. 4, 345–
http://dx.doi.org/10.3762/bjnano.4.40.
Hajipour, M.J., Fromm, K.M., Ashkarran, A. Akbar, de Aberasturi,
D. Jimenez, de Larramendi, I.R., Rojo, T., Serpooshan, V., Parak,
W.J., Mahmoudi, M., 2012. Antibacterial properties of nanoparticles. Trends Biotechnol. 30, 499–511. http://dx.doi.org/10.1016/j.
tibtech.2012.06.004.
Handy, R.D., von der Kammer, F., Lead, J.R., Hassello¨v, M., Owen,
R., Crane, M., 2008. The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17, 287–314. http://dx.doi.
org/10.1007/s10646-008-0199-8.
Hisatomi, T., Kubota, J., Domen, K., 2014. Recent advances in
semiconductors for photocatalytic and photoelectrochemical water
splitting. Chem. Soc. Rev. 43, 7520–7535. http://dx.doi.org/
1039/C3CS60378D.
Holzinger, M., Le Goff, A., Cosnier, S., 2014. Nanomaterials for
biosensing applications: a review. Front. Chem. 2, 63. http://dx.doi.
org/10.3389/fchem.2014.00063.
Ibrahim, K.S., 2013. Carbon nanotubes-properties and applications:
a review. Carbon Lett. 14, 131–144. http://dx.doi.org/10.5714/
CL.2013.14.3.131.
Ingham, B., 2015. X-ray scattering characterisation of nanoparticles.
Crystallogr. Rev. 21, 229–303. http://dx.doi.org/10.1080/
X.2015.1024114.
Iqbal, N., Khan, I., Yamani, Z.H., Qurashi, A., 2016. Sonochemical
assisted solvothermal synthesis of gallium oxynitride nanosheets
and their solar-driven photoelectrochemical water-splitting applications. Sci. Rep. 6, 32319. http://dx.doi.org/10.1038/srep32319.
I. Khan et al.
Iravani, S., 2011. Green synthesis of metal nanoparticles using plants.
Green Chem. 13, 2638. http://dx.doi.org/10.1039/c1gc15386b.
Jain, P.K., Lee, K.S., El-Sayed, I.H., El-Sayed, M.A., 2006. Calculated absorption and scattering properties of gold nanoparticles of
different size, shape, and composition: applications in biological
imaging and biomedicine. J. Phys. Chem. B 110, 7238–7248. http://
dx.doi.org/10.1021/jp057170o.
Kestens, V., Roebben, G., Herrmann, J., Ja¨mting, A˚ ., Coleman, V.,
Minelli, C., Clifford, C., De Temmerman, P.-J., Mast, J., Junjie, L.,
Babick, F., Co¨lfen, H., Emons, H., 2016. Challenges in the size
analysis of a silica nanoparticle mixture as candidate certified
reference material. J. Nanopart. Res. 18, 171. http://dx.doi.org/
1007/s11051-016-3474-2.
Khan, I., Abdalla, A., Qurashi, A., 2017a. Synthesis of hierarchical
WO3 and Bi2O3/WO3 nanocomposite for solar-driven water
splitting applications. Int. J. Hydrogen Energy 42, 3431–3439.
http://dx.doi.org/10.1016/j.ijhydene.2016.11.105.
Khan, I., Ali, S., Mansha, M., Qurashi, A., 2017b. Sonochemical
assisted hydrothermal synthesis of pseudo-flower shaped Bismuth
vanadate (BiVO4) and their solar-driven water splitting application.
Ultrason. Sonochem. 36, 386–392. http://dx.doi.org/10.1016/j.
ultsonch.2016.12.014.
Khan, I., Ibrahim, A.A.M., Sohail, M., Qurashi, A., 2017c. Sonochemical assisted synthesis of RGO/ZnO nanowire arrays for
photoelectrochemical water splitting. Ultrason. Sonochem. 37,
–675. http://dx.doi.org/10.1016/j.ultsonch.2017.02.029.
Khlebtsov, N., Dykman, L., 2011. Biodistribution and toxicity of
engineered gold nanoparticles: a review of in vitro and in vivo
studies. Chem. Soc. Rev. 40, 1647–1671. http://dx.doi.org/10.1039/
C0CS00018C.
Khlebtsov, N., Dykman, L., 2010. Plasmonic nanoparticles. pp. 37–
http://dx.doi.org/10.1201/9781439806296-c2.
Khlebtsov, N.G., Dykman, L.A., 2010b. Optical properties and
biomedical applications of plasmonic nanoparticles. J. Quant.
Spectrosc. Radiat. Transf. 111, 1–35. http://dx.doi.org/10.1016/j.
jqsrt.2009.07.012.
Kosmala, A., Wright, R., Zhang, Q., Kirby, P., 2011. Synthesis of
silver nano particles and fabrication of aqueous Ag inks for inkjet
printing. Mater. Chem. Phys. 129, 1075–1080. http://dx.doi.org/
1016/j.matchemphys.2011.05.064.
Kot, M., Major, Ł., Lackner, J.M., Chronowska-Przywara, K.,
Janusz, M., Rakowski, W., 2016. Mechanical and tribological
properties of carbon-based graded coatings. J. Nanomater. 2016,
–14. http://dx.doi.org/10.1155/2016/8306345.
Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst,
L., Muller, R.N., 2010. Magnetic iron oxide nanoparticles:
synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 110. http://dx.doi.
org/10.1021/cr900197g, pp. 2574–2574.
Lee, J.E., Lee, N., Kim, T., Kim, J., Hyeon, T., 2011. Multifunctional
mesoporous silica nanocomposite nanoparticles for theranostic
applications. Acc. Chem. Res. 44, 893–902. http://dx.doi.org/
1021/ar2000259.
Lee, S., Choi, S.U.-S., Li, S., Eastman, J.A., 1999. Measuring thermal
conductivity of fluids containing oxide nanoparticles. J. Heat
Transfer 121, 280–285. http://dx.doi.org/10.1115/1.2825978.
Lei, Y.-M., Huang, W.-X., Zhao, M., Chai, Y.-Q., Yuan, R., Zhuo,
Y., 2015. Electrochemiluminescence resonance energy transfer
system: mechanism and application in ratiometric aptasensor for
lead ion. Anal. Chem. 87, 7787–7794. http://dx.doi.org/10.1021/
acs.analchem.5b01445.
Li, D., Baydoun, H., Verani, C.N., Brock, S.L., 2016. Efficient water
oxidation using CoMnP nanoparticles. J. Am. Chem. Soc. 138,
–4009. http://dx.doi.org/10.1021/jacs.6b01543.
Lin, G., Zhang, Q., Lin, X., Zhao, D., Jia, R., Gao, N., Zuo, Z., Xu,
X., Liu, D., 2015. Enhanced photoluminescence of gallium
phosphide by surface plasmon resonances of metallic nanoparticles.
RSC Adv. 5, 48275–48280. http://dx.doi.org/10.1039/
C5RA07368E.
Liu, D., Li, C., Zhou, F., Zhang, T., Zhang, H., Li, X., Duan, G.,
Cai, W., Li, Y., 2015a. Rapid synthesis of monodisperse Au
nanospheres through a laser irradiation -induced shape conversion,
self-assembly and their electromagnetic coupling SERS enhancement. Sci. Rep. 5, 7686. http://dx.doi.org/10.1038/srep07686.
Liu, D., Zhou, W., Wu, J., 2016. CuO-CeO2/ZSM-5 composites for
reactive adsorption of hydrogen sulphide at high temperature. Can.
J. Chem. Eng. 94, 2276–2281. http://dx.doi.org/10.1002/cjce.22613.
Liu, J., Liu, Y., Liu, N., Han, Y., Zhang, X., Huang, H., Lifshitz, Y.,
Lee, S.-T., Zhong, J., Kang, Z., 2015b. Metal-free efficient
photocatalyst for stable visible water splitting via a two-electron
pathway. Science 80 (347), 970–974. http://dx.doi.org/
1126/science.aaa3145.
Loureiro, A., Azoia, N.G., Gomes, A.C., Cavaco-Paulo, A., 2016.
Albumin-based nanodevices as drug carriers. Curr. Pharm. Des. 22,
–1390.
Lykhach, Y., Kozlov, S.M., Ska´la, T., Tovt, A., Stetsovych, V., Tsud,
N., Dvorˇa´k, F., Joha´nek, V., Neitzel, A., Myslivecˇek, J., Fabris, S.,
Article Metrics
Abstract Views : 1312 timesRefbacks
- There are currently no refbacks.
Copyright (c) 2021 Jurnal Latihan
License URL: https://creativecommons.org