
International Journal for Educational and Vocational Studies  
Vol. 1, No. 1, May 2019, pp. 31-46 

Available online at http://ojs.unimal.ac.id/index.php/ijevs 

  

 

DOI: https://doi.org/10.29103/ijevs.v1i1.1416     

Research Article                                                                        E-ISSN: 2684-6950 

 

31 
 

Hybrid-dynamic objects: DGS environments and conceptual 

transformations 

Stavroula Patsiomitou 

Visiting Lecturer (University of Crete), PhD (University of Ioannina), MEd (National and Kapodistrian University of Athens), Greece 

E-mail: spatsiom@gmail.com 

*Corresponding Author 

  

 

 

1. Introduction 

When a student endeavors to interpret the word “object”, 

s/he could consider it through different lenses: as 

something material we can perceive through our sensory 

system, as something that we can act on, or/and as 

something we can think about. Mathematical objects are a 

particular kind of object (e.g., functions, operations on 

functions, spaces of all kinds-for example Banach spaces, 

geometrical figures). 

Numerous researchers have investigated the nature of 

mathematical objects and tried to define them (e.g., Davis, 

1983, 1984; Piaget, 1985; Gray & Tall, 1991, 1994; 

Dubinsky, 1991; Dubinsky & McDonald, 2001; Sfard, 1987, 

1989, 1991, 1992; Tall et al., 2000). As we know, since Plato, 

a mathematical object has been considered as something 

abstract. Portnoy et al. (2006) report Plato’s (360 B.C.) 

perspective on the figural constructions of geometers as a 

connection between the figural objects (perceived objects) 

and the corresponding conceptual objects (conceived 

objects): 

“they are not thinking about these figures but of those 

things which the figures represent; thus it is the square 

in itself and the diameter in itself which are the matter 

of their arguments, not that which they draw; similarly, 

when they model or draw objects, which may themselves 

have images in shadows or in water, they  

 

use them in turn as images, endeavoring to see those 

absolute objects which cannot be seen otherwise than by 

thought. (Plato’s Republic, 360 B.C., p. 391, reported in 

Portnoy et al., 2006, p. 199). 
 

Building on the aforementioned researchers’ viewpoint, 

one might wonder: Are the students able to grasp logical 

operations on abstract mathematical objects? What does it 

mean to obtain access to an abstract mathematical object or 

a mathematical entity? This assumption imposes a series of 

questions about the nature of the mathematical objects to 

which symbols are presumed to refer; for example, if we are 

not able to have access to mathematical objects, which 

processes could become mental objects whose aim is to 

reinforce students’ cognitive development in mathematical 

thinking? 

In the current paper, I am going to present a theoretical 

frame based on empirical results consisted of the following 

parts: (a) mathematical objects, and operations on 

mathematical objects and their representations (b) the 

meaning of object in Action-Process-Object-Schema (APOS) 

theory (c) the notion of procept [-in-action] in a Dynamic 

Geometry System (DGS) (d) dynamic objects and hybrid 

objects in a DGS environment, and (e) an analysis of 

examples of procepts-in-actions that occurred during my 

research process in a DGS. My aim is to contribute to the 
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field of the didactics of mathematics in relation to students’ 

cognitive development.  

2. What is a mathematical object? 

A large amount of researchers pointed out that a 

mathematical object can be represented using different 

models and representations (e.g., Chevallard, 1989; Janvier, 

1987) or semiotic systems (e.g., Duval, 1993, 1995, 1999, 

2000). As Duval (1993) argues “[…] on the one hand, the 

learning of mathematical objects cannot be other than a 

conceptual learning and, on the other hand, it is only by 

means of semiotic representations that an activity on 

mathematical objects becomes possible” (p. 38). Moreover, 

according to Duval (1999) "the only way of gaining access to 

mathematical objects is using signs, words or symbols, 

expressions or drawings"(p.60).  

On the other hand, what is a mathematical concept? In 

the words of Peirce (1894): “We think only in signs. These 

mental signs are of mixed nature; the symbol-parts of them 

are called concepts […]” (Peirce, 1894, reported in Stewart, 

2008, p. 12). In order to develop an understanding of a 

concept, the students have to create a transitional bridge 

between the ‘external’ and the ‘internal or mental’ 

representation of this concept (e.g, Kaput, 1999; Goldin & 

Shteingold, 2001; Pape & Tchoshanov, 2001; Tchoshanov, 

2013). Tchoshanov (2013) also argues that “the 

development of students’ representational thinking is a 

two-sided process, an interaction of internalization of 

external representations and externalization of mental 

images” (p. 74). 

 

Figure 1. The relation between mental representations and physically instantiated  
      representations (Kaput, 1991, p. 57): an adaptation for the current study 

 

Moreover, students’ visualization of an object may differ 

from their perception of it, while the important thing is to 

understand which mathematical concept or relationship is 

being represented. A computer microworld such as a DGS 

is an external representational system that can encourage 

students to interact with visually represented 

mathematical concepts and ideas and can help them to 

translate between mathematical representations or 

interpret information received from a real world 

environment. Kaput (1991) reporting Vergnaud (1987) 

explains and depicts the relation between mental 

representations (i.e. the signified) and material represen-- 

tations or physically instantiated symbols (i.e. the signifier), 

for example pictorial, diagrammatic notations, mathemati-  

cal symbols, diagrams, graphic representations. According 

to Kaput (1991). 

“When using such material notations, we build and/or 

elaborate our mental structures in cyclical processes that 

go in opposite directions. The arrow pointing upward is 

intended to depict two types of processes: deliberate 

reading, and the more passive, less consciously 

controlled and less serially organized processes of 

having mental phenomena evoked by the physical 

symbols.”(p. 57)[…] The directionality of the reference 

depends on the cognitive operations involved, which in 

turn depend on the context, and hence is not 

fixed”.(p.59). 

Kaput (1991) also clarifies Peirce’s (1933) semiotic 

behavior as involving an interaction among “sign, object 

and interpretant”, giving an example: “a numeral A-the 

sign, that refers to the numerosity of a set of objects B-the 

object and the mind in which the integration takes 

place-the interpretant […]” (p.59). For Peirce a sign is 

"anything which on the one hand is so determined by an 

object and on the other hand so determines an idea in a 

person's mind […] the interpretant of the sign, is thereby 

mediately determined by that object. […] " (Hoffmann, 2004, 

p. 198). According to Adda (1984). 

“First of all, being abstract, the objects of mathematics 

that are treated, the properties and the relations that are 

studied can never be seen (in contrast, for example, with 

the objects studied by the physical and natural sciences) 

and so the distance between the signified and the 

signifiers plays here a role that is more crucial than for 

any other type of discourse. […] By studying the 

«misunderstandings» brought about by this confusion 

between signifier and signified we have observed the 

responsibility they bear not only in a very great number 

of errors but also in the impossibility of acquiring the 

concepts themselves” (p.58). 

Many researchers (e.g. Dienes, 1960; Piaget, 1972 a, b; 

Davis, 1983, 1984) also, “focused on the idea of a process 

becoming a mental object […] as a fundamental method of 

cognitive development in mathematical thinking” (Davis, 

Tall & Thomas, 1997, p.132). On the other hand, in the 

words of Sfard (1989) “How can anything be a process and 

an object at the same time?” (Sfard, 1989, reported in 

Gray& Tall, 1991, p. 72).  

Gray & Tall (1991) define the meaning of ‘procept’ as a 

combination of the words “pro-[cess] + [con]-cept”, “to be the 

amalgam of process and concept in which process and 

product is represented by the same symbolism” (Gray &Tall, 

1991, p. 73). A procept, “is consisted of a collection of 

elementary procepts which have the same object” (Gray & 

Tall, 1994 reported in Davis, Tall & Thomas, 1997, 

p.134). The meaning of an elementary procept is according 

to them “an amalgam of […]: a process which produces a 

mathematical object and a symbol which is used to 
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represent either process or object […]” (Gray & Tall, 1994 

reported in Davis, Tall & Thomas, 1997, p.134). Sfard (1989, 

1991, 1992) also identifies that a mathematical object, or an 

abstract object generally, can be conceived or interpreted 

both operationally, when it is considered as a performed 

process or a process to be carried out, and structurally 

when it is interpreted as a permanent object with concrete 

properties. She identifies the meaning of reification as the 

next step in the mind of learner as “it converts the already 

condensed process into an object-like entity” (Sfard, 1992, 

pp. 64-65, in Davis, Tall & Thomas, 1997, p.133). In Sfard’s 

opinion mathematical objects can be seen as discursive 

objects within a mathematical discourse occurred or taking 

place in a classroom.  

A brief survey of the literature reveals that many 

researchers have generally used the terms ‘abstract object’, 

‘process’, ‘procept’, to describe phenomena observed in the 

areas of Algebra and Calculus. But can these meanings be 

implemented in the mathematical area of Euclidean or 

Dynamic geometry?  
 

3. Operations on mathematical objects and their 
representations 

For most researchers, representations can help students to 

reorganize and translate their ideas using symbols. They 

are also useful as communication tools (e.g., Kaput, 1991) 

and can function as tools for understanding of 

mathematical objects and concepts, since they help with the 

communication of ideas and provide a social environment 

for the development of mathematical discussion. The 

knowledge of supporting external representational systems 

for planning activities, allows us to facilitate the provision 

of information and support conceptual understanding of 

mathematical objects and the development of their 

representational thinking. Students face difficulties when 

they explore mathematical objects, no matter if they are in 

a static or dynamic environment. They have to mentally 

operate on the abstract object, even if it is visually 

supported by a computing environment. This is what 

Laborde (2003) investigates, interrogates or (probably) asks 

herself: “but if the thought experiments on abstract objects 

are not available (as it is often the case for learners), a 

crucial question about learning is whether such 

environments could favour an internalization process of the 

external actions in the environment”. The concept of a 

function, for example, is a mathematical object that cannot 

be smoothly understood by high school students, especially 

by students who find maths difficult. I shall mention a path 

regarding the concept of function based on my experience 

as a teacher of mathematics which can scaffold students 

and allow them to gradually grasp all the more abstract 

mathematical objects.  

Elementary level arithmetic and algebraic approach: “1 

kg of apples costs 2 Euros, 2 kg cost 4 Euros […] x kg cost y 

Euros. What is the relationship between x and y?” The 

appearance of the variables x and y reveals a limited 

understanding on the part of students because x and y are 

symbols used as signifiers referring to objects; in the words 

of Piaget (1952/1977), they are “intentionally chosen to 

designate a class of actions or objects.” (p.191). The 

question is how the relationship between different kinds of 

objects can be shown? Which procedure/or procedures can 

we apply so that the concept of function is easily 

understandable for students? Do these procedures or 

processes lead to an understanding of the concept of 

function? 

 

Figure 2. Linking the different kinds of representation of a function 
 

1st level. The variable’s approach: I continue: 1 kg of 

apples costs 2 Euros, 2 kg costs 2*2 Euros etc.; […] the 

number 6 is represented /signified by the product 2*3 and 

the symbol y is represented /signified by the product 2*x. 

(i.e., x kg cost 2x Euros). The expression 2*3 is the same 

notation to represent both a process and the product of that 

process. In other words it “could be used both operationally, 

as denoting an operation, and structurally, as signifying an 

object (the result of an operation). The fact, however, that 

the same signifier had to be employed in two seemingly 

incompatible roles, operational and structural, certainly 

aggravated the difficulty of reification” (Sfard, 2000, p.50).  

2nd level. A diagrammatic approach: The next step is 

the construction of Venn diagrams in which arrows connect 

the A set of numbers representing kilograms with the B set 

of numbers representing Euros. When representing objects 

in Venn diagrams, we use dots for objects. Constructing 

Venn diagrams allows students to think about the 

classification of objects, while the arrows help them to 

describe relations between objects and understand 

meanings such as “one to one” and “onto”. 

3rd level. A graphic and tabular approach: A function is 

used to describe the expressed relationships between 

variables. Replacing the numbers 1, 2, 3… that represent 

the kilograms with the variable “x” and constructing a 

function (y=2x) in which we determine a rule for a sequence 

of objects, ultimately provides us with a definition of the 

concept of function and its graph. Thus, in response to the 

symbol of the function y=2x (‘representamen’ in the words of 

Peirce, 1955) one can draw a line which would be the 

interpretant of the symbol y=2x.  
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Figure 3. Types of transformations of semiotic representations (Duval, 2002, p.3): 
  an adaptation for the current study  
 

The prerequisite here for students is a structural 

knowledge of numbers which allows them to use numbers 

to build a more complex concept. In Figure 2, we can view 

both treatments and conversions between the 

aforementioned semiotic representations.  
 “Treatments are transformations of representations 

which happen within the same register […] (Duval, 
2002, p.3) 

 Conversions are transformations of representation 
which consist of changing a register without changing 
the objects being denoted […]” (Duval, 2002, p.4). 

   

Figure 4a, b. Snapshots of families of functions using the animation of parameters 
  

If we use a parameter “a” to define a function y=ax and 

represent it in a Dynamic Geometry System (DGS), the 

family of representations we take as we animate the 

parameter could result in the perception of an empirical 

generalization of the concept of function. The traces of the 

object y=ax as we animate the parameter “a” provide the 

path through which the function is transformed (Fig. 4a, b). 

Then we can transform the parameter, but the result of the 

parameter’s alterations affects the linked graphic 

representations, providing a family of objects with the same 

properties, which can help students, achieve a deeper 

understanding.  

 

Figure 4c: Snapshots of families of functions using the animation of parameters 

(e.g., Patsiomitou, 2009b) 

 

These traces are not a static mathematical object. They 

are not dynamics, as they cannot be dragged, but neither 

are they static. So what kind of object are the lines the 

traces leave on screen? I have denoted them as hybrid 

objects (Patsiomitou, 2019, p. 15).  

Traces play an important role in helping students 

understand the transformations of parameters and their 

impact on the graphic representations.  

Similarly, transformations in geometry are mentioned 

by many researchers as ‘geometric functions’ (e.g., 

Hollebrands, 2003, p.57; Steketee & Scherr, 2016, p.450; 

Patsiomitou, 2006c, p.1072, 2019). Hollebrands (2003) 

defined transformations as follows:  

“Transformations are special functions because they are 

both one-to-one and onto. Understanding that a 

transformation is one-to-one involves knowing that if 

you have two different elements in the domain (two 

points A and B such that A  B) then the output for A 

under the transformation will be different from the 

output of B under that same transformation (T(A)  T(B) 

where T represents a transformation). Understanding 

that a transformation is onto involves knowing that 

every element in the range (every point Q in the plane) 

has a corresponding element in the domain (a point P in 

the plane) such that T(P) = Q”. (p. 57) 

Steketee & Scherr (2016) also report dependent and 

independent variables, denoting the geometric 

transformations of objects in a DGS as “geometric functions” 

and arguing that: 

“Cognitive scientists tell us that students build abstract 

mathematical concepts by connecting those concepts to 

the physical world through conceptual metaphors 

(Lakoff and Núñez 2000; Radford 2012), such as the 

metaphor that numbers are points on a line. Geometric 

functions are based on a similar metaphor—that 

geometric variables are movable points. […] This 

metaphor enables students to use dynamic software to 

create a point (the independent variable), construct 

another point (the dependent variable) that depends on 

the first, and drag to observe the resulting covariation 

and relative rate of change. In other words, a geometric 

function relates the preimage point—the independent 

variable x—with its image—the dependent variable that 

is a function of x.” (p. 450)  

The difficulty of students to imagine transformations on 

geometric figures during problem solving situations is 

based in the nature of geometrical concepts which 

Fischbein (1993) defined as an amalgam of: “abstract ideas 

on one hand and sensory representations reflecting some 

concrete operations on the other” (p. 140). Duval (1999) in 

his plenary paper, “Representation, vision and 

visualization: cognitive functions in mathematical thinking. 

Basic issues for learning”, describes three kinds of 

operations delimited by how a given figure is transformed: 

“(a)  The mereologic way: you can divide the whole given 

figure into parts of various shapes [...] and you can 

combine these parts in another whole figure or you can 

make appear new subfigures.[...]. We call 

«reconfiguration» the most typical operation. 

(b)  The optic way: you can make a shape larger or 

narrower, or slant, as if you would use lenses. In this 

way, without any change, the shapes can appear 
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differently [...]. 

(c)  The place way: you can change its orientation in the 

picture plane. It is the weakest change. It affects mainly 

the recognition of right angles, which visually are made 

up of vertical and horizontal lines” (Duval, 1988, pp. 

61-63; 1995, p.147).  

The mereologic, the optic way and the place way 

constitute what Duval defined as “the operative 

apprehension” of the figure, which according to him differs 

from the perceptual apprehension “because perception fixes 

at the first glance the vision of some shapes and this 

evidence makes them steady”(p.19) [...] Operative 

apprehension is [also] independent of discursive 

apprehension”(p.21).  

Thus, we have to act or operate on external objects or on 

external representations of these objects or on their 

external symbols. This is in accordance with what Piaget 

(1970) stated about mathematical knowledge which can be 

abstracted either directly from objects or the external 

experiences we have in relation to the objects, or from 

operations that are mentally performed on objects. 
 

4. Dynamic objects and dynamic hybrid objects in a 
DGS environment  

Dynamic mathematical objects are a particular kind of 

mathematical objects, created in a dynamic geometry 

software (DGS). Generally speaking, microworlds have 

been created to support abstract thinking through visual 

representations on computer screen and their 

transformations. Laborde (2003) in her article “Technology 

used as a tool for mediating knowledge in the teaching of 

mathematics: the case of Cabri-geometry” stated that: 
 

“the idea of computer environments as reifying abstract 

objects and structures originates from the notion of 

microworld in which it is possible to explore and 

experiment on representations of abstract objects as if 

they were material objects” (p.6)   
 

Dynamic Computer software programs, such as the 

Geometer’s Sketchpad (Jackiw, 1991/2001), Cabri II 

(Laborde et al., 1988), Geogebra (Hohenwarter, 2001) etc. 

are means with which students are able to create 

mathematical objects, using tools and commands. Dynamic 

geometry environments are defined by Balachef & Kaput 

(1997) as : 
 

“(a) a set of primitive objects (point, line, segment, circle, 

etc.) created by the tools of the software and (b) of 

elementary actions (for example, commands to draw a 

perpendicular or a parallel line given a point and a line 

etc.). (p.8) 
 

We can also create a macro construction or a custom tool 

which “allows an organized set of primitive actions to be 

turned into a complex one” (Balachef & Kaput, 1997, p. 12).  

In the case of algebraic patterns, mathematical objects 

can be represented and illustrated in both numerical and 

figurative modes as a way of generalizing them.  

 
 

 

 
Figure 5a. A convention for expressing 
generality in a “hybrid sum” (a mixed 
numerical and algebraic notation) (Kaput, 
1991, p.68) 

Figure 5b. A convention for 
expressing generality in a “hybrid 
sum” (a mixed figurative and 
symbolic notation with an array of 
rods) (Kaput, 1991, p.65) 

 

Kaput (1991) for example revisits the problem that 

Gauss phased to sum the integers from 1 to 100, “exploiting 

a convention for expressing generality in mixed numerical 

and algebraic notation” (p.68). Kaput mentions a “hybrid 

sum” (numeric and algebraic) which is illustrated using the 

powerful mode of another “hybrid sum” (figurative and 

symbolic). 

Many researchers use the word “hybrid” to denote 

something that does not obviously belong in a given class of 

objects, or a mixed entity composed of different elements. 

Verillon & Andreucci (2006) for example in their study 

“Artefacts and cognitive development:how do psychogenetic 

theories of intelligence help in understanding the influence 

of technical environments on the development of thought?” 

report Rabardel (1995) who argued that during 

instrumental genesis “the resulted instruments are 

actually hybrid entities, on the one part are psychological 

and on the other part artefactual” (p.12). Morgan et al. also 

mention the representational hybrid nature of the 

Turtleworlds environment, because it behaves like a hybrid 

between Logo and Dynamic Manipulation systems due to 

the ‘variation tool’ (Morgan et al. 

https://www.itd.cnr.it/telma/docs/Rep_Del_Draft3.pdf, p.7). 

Cerulli (2004) also mention “a hybrid language to be used to 

bridge the natural language with the mathematical one” 

(p.36). As Cerulli states “the evolution of meanings is based 

on the idea of deriving, from a used instrument, hybrid 

signs which refer both to the practice with the instrument 

and to the sphere of theory of mathematical knowledge” (p. 

142). Firstly, speaking of a DGS environment, it is 

important to identify the meanings of geometrical objects in 

such an environment (Patsiomitou, 2019, pp. 14-15).  
 

 I will use the meaning of dynamic geometrical object, 
to denote every object that has been constructed in a 
dynamic geometry software interface. This object could 
be a “drawing” or a “figure” which intrinsically has 
dynamic properties. Gonzalez and Herbst (2009) have 
defined the dynamic diagram as “a diagram made with 
DGS and that has the potential to be changed in some 
way by dragging one or more of its parts” (p.154).  

 I will use the meaning of dynamic diagram, to denote 
an external representation composed out of a set of 
rationally related dynamic objects in a DGS 
environment. A dynamic diagram can be a simulation 
of a problem modeled in the DGS environment, which 
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includes many geometric objects and combinations of 
interaction techniques implemented in these objects.  
 

 I introduced the meaning of dynamic section 
(Patsiomitou, 2019, p. 15) to denote a set of dynamic 
diagrams that are linked to each other procedurally 
and conceptually, even if they differ structurally. A 
dynamic section contains meanings belonging to the 
same class that are united or joined into a whole, 
which in the concrete situation symbolically means 
they exist in one [alive book] section or they are 
dynamically linked. As I have written in a previous 
work (Patsiomitou, 2018b, p.40): 
  

“A first and very important effect on students’ thinking 

stems from the Sketchpad software allowing the user to 

create sequential linking pages so that the whole 

Sketchpad file becomes an “alive book” (Patsiomitou, 

2005, p. 63, in Greek; Patsiomitou, 2014). The “alive 

digital representations” (Patsiomitou, 2005, p. 67) 

function, which makes the whole figural diagram “alive”, 

giving the students the potential to focus their attention 

on simultaneous modifications (and transformations) of 

objects on the screen (Patsiomitou, 2005, p. 68), also 

yielded important results during my investigations”.  

 

In the Geometer’s Sketchpad environment (or the Web 

Sketchpad) anyone can create a dynamic section by linking 

pages in the same file. In this way, a solution to a problem 

can be separated into sequential componential steps that 

help a student to create linking mental representations in 

his/her mind (Patsiomitou, 2008b, c, d, 2009 a, b, 2010, 

2011, 2012a, b, 2013, 2014, 2018a, b, 2019).  

 I introduced the meaning of hybrid object (Patsiomitou, 
2019, p. 15) to denote an on-screen geometric object 
that is intrinsically dynamic but remains 
untransformed /unaltered on screen, even though 
dynamic dragging is applied or implemented on it. 
This situation comes about because of the hybrid 
object’s dependence from its parent objects. Briefly, a 
hybrid dynamic object is something that does not 
obviously belong to either the static or dynamic world. 
It is an object created in a DGS by means of complex 
transformations (or on which complex transformations 
can be performed); something between a static and a 
dynamic object; an object that is intrinsically dynamic, 
signifying a static behavior which is rendered dynamic 
by to the users’ actions. 

 I introduced the meaning of hybrid diagram 
(Patsiomitou, 2019, p. 15) in the DGS environment to 
denote the untransformed on-screen diagram, which 
has been created to stay hybrid and become dynamic if 
we implement a transformation on its parents. The 
diagram is intrinsically dynamic, but a user could use 
it as an image or a static diagram, if s/he does not 
know how to make it dynamic. It is important to point 
out at this point that: the transformation of objects in 
a DGS environment is dependent on whether these 
objects have been defined, as hybrid objects or not. 

5. The implementation of APOS theory in a DGS 
environment 

One way to analyzing students’ formulations during their 

interaction with dynamic geometry transformations on 

dynamic or hybrid objects is to consider those formulations 

through the Action-Process-Object-Schema (APOS) theory 

lenses, a theory developed from Dubinsky and his 

colleagues (e.g., Dubinsky, 1988, 1991; Dubinsky & 

McDonald, 2001), based on the theory of reflective 

abstraction (Piaget, 1970).  Concretely, according to APOS 

theory (Cottrill et al., 1996; Dubinsky & McDonald, 2001) 

when a student constructs mental Actions, Processes and 

Objects, then s/he organizes them to mental Schemas to 

understand a mathematical concept and solve the problems 

(APOS theory). According to APOS theory, in order to 

understand a mathematical concept a student must 

manipulate physically or mentally a transformation on 

mental or physical objects, in other words an “Action” on 

objects, as a reaction to stimuli perceived from the external 

environment, focusing on the way that a procedure thus 

could be used as an input to another procedure; actions on 

objects then can be interiorized to become a Process, which 

accordingly can be encapsulated to become Objects and 

then can be organized to become Schemas. According to 

Cottrill et al. (1996):   

An action is any physical or mental transformation of 

objects to obtain other objects. It occurs as a reaction to 

stimuli which the individual perceives as external. It 

may be a single step response, such as a physical reflex, 

or an act of recalling some fact from memory. It may also 

be a multi-step response, by then it has the characteristic 

that at each step, the next step is triggered by what has 

come before, [authors italics…] When the individual 

reflects upon an action, he or she may begin to establish 

conscious control over it. We would then say that the 

action is interiorized, and it becomes a process (Cottrill, 

et al, 1996, p. 171, in Davis, Tall and Thomas, 1997, p. 

133). 

Making a review on the briefly reported studies it is 

obvious that many researchers have mentioned the 

meanings of Action-Object-Process-Schema, to describe the 

phenomena observed in the area of Algebra and Calculus. 

Can these meanings be implemented in the mathematical 

area of Euclidean or Dynamic geometry? What is their 

impact in the reification process? As Balacheff & Kaput 

(1997) point out  their impact “is based in a reification of 

mathematical objects and relations that students can use to 

act more directly on these objects […] a new experiential 

mathematical realism” (Balacheff & Kaput, 1997, p. 

469-470). 

Hollebrands (2003) investigated the nature of students’ 

understandings of geometric transformations in the context 

of “The Geometer’s Sketchpad” environment and she 

analyzed students’ conceptions of transformations as 

functions, using APOS theory. Hollebrands (2007) also 

addressed the way students interpret objects created with 

the use of the dynamic program when they are learning 

about geometric transformations. As Hollebrands argued 

“the nature of the abstractions that students made as they 

worked with technology seemed to be related to their 

understanding of transformations and the tool” (2007, p. 

190).   

Patsiomitou (2019) also reports that she instrumentally 
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decoded Vecten’s theorem using dynamic parameters 

(Patsiomitou, 2006c, in Greek, p. 1272):  

“The animation of all parameters is a direct object 

manipulation which transforms every part of the object. 

This leads to a kind of algebraic geometry, which takes 

the parametric sides and angles as input and provides a 

continuous transformation of the diagram as output […] 

we can thus speak about functional geometry and 

through the conservation of figures’ properties about the 

concept of geometric function”. 

During the synthesis of a dynamic diagram in a DGS 

environment a student manipulate the dynamic primitives 

and transforms the diagram. S/he interacts with the 

diagram and creates mental objects that can be 

encapsulated to become a mental schema. The way that the 

students use the tools in a DGS  environment follows the 

“rules” for the tools that have been addressed by Verillon & 

Rabardel (1995) during instrumental genesis process:  

“A machine or technical system does not immediately 

constitute a tool for the subject. Even explicitly 

constructed as a tool, it is not, as such, an instrument for 

the subject. It becomes so when the subject has been able 

to appropriate it for himself—has been able to 

subordinate it as a means to his ends—and, in this 

respect, has integrated it with his activity” (pp. 84–85). 
 

Instrumental genesis is a process during which an 

artefact with which the student interacts, becomes an 

instrument (Drijvers, & Gravemeijer, 2005 ; Drijvers, & 

Trouche, 2008). Cerulli (2004) clarifies the difference 

between the meaning of artifact and the meaning of 

instrument in her thesis. As she states:  

“An instrument, for us, is a means used, on purpose, by 
an agent in order to achieve an objective, the agent (will 
usually be considered to be human). It can be anything, 
or any object, depending on what it is used for and how. 
Thus, we have either instruments that are artefacts, or 
instruments that are not artefacts; for instance, a 
hammer, or a stone, can be used as instruments to drive 
in nails, but the first one is an artefact, whilst the second 
is not, it is simply an object” (Cerulli, 2004, p.8). 

During instrumental genesis the learner builds 

utilization schemes and instrumented action schemes in 

“the two-sided relationship between tool and learner as a 

process in which the tool […] shapes the thinking of the 

learner, but also is shaped by his thinking” (Drijvers & 

Gravemeijer, 2005, p. 190). The notion of ‘scheme’ is central 

to Piaget’s theory, while Vergnaud (1998) gives a more 

dynamic interpretation of the notion. According to 

Vergnaud (1998) “the concept of a ‘scheme’, is the invariant 

organization of behavior for a certain class of situations. […] 

The theorems-in-action and concepts-in-action are 

operational invariants and, as such, essential components 

of schemes” (p.167). From Trouche’s point of view, (personal 

e-mail correspondence with Professor Trouche on October 

22, 2007) “[…] what is important is to analyze the 

operational invariants […] meaning “the 

concepts-in-actions, that is concepts that are implicitly 

considered as pertinent, or theorems-in-actions that are 

propositions believed to be true” (Trouche, 2004, p. 285).  

Generally speaking, when we solve a problem in 

geometry, we construct a figure in a few steps and in such a 

way that a procedure can be used as an input to the 

next--and almost always sequential--procedure. As they 

engage in problem solving, students construct mental 

actions, performing transformations on objects either 

explicitly or from memory. The student or the teacher can 

perform an operation mentally and execute it on the 

computer screen. This process creates objects.  

For example, in order to draw a circle with centre A 

and radius AB, a student constructs a utilization scheme 

of the DGS tool. When s/he repeats the process to 

construct a congruent circle with centre C and radius 

CD=AB s/he is focused on the way in which the new 

procedure resulted as an output from a few previous 

procedures (for example the usage of software primitives). 

This is a process for creating a congruent circle, which can 

be encapsulated to become a mental object. At the same 

time, the student has constructed an instrumented action 

scheme, which enables him/her to connect meanings (for 

example the meaning of congruent circles with the 

meaning of congruent radiuses). A segment (or a line) in 

the Euclidean geometry is a geometrical object. We can 

create segments in a DGS environment, then measure 

their length and calculate their sum. We can also use the 

symbol “+” to represent the process of segments’ addition, 

leading to the concept of segments’ sum in geometry, in a 

similar way that Davis et al. (1997, p.134) report its 

pivotal role in algebra. Concretely, Davis et al. mention 

that  
“The symbol 4+2 occupies a pivotal role, as the process 
of addition (by a variety of procedures) and as the 
concept of sum. Soon the cognitive structure grows to 
encompass the fact that 4+2, 2+4, 3+3, 2 times 3, are all 
essentially the same mental object” (Davis et al., 1997, 
p.134). 

Building on the above, I think there is a continuous 

process ongoing in students’ mind as they create a concept. 

The meaning of ‘procept’ is thus dynamic in a DGS 

environment; adapting its meaning to a ‘procept-in-action’ 

for the DGS environment could thus support the 

appearance of operational invariants during the 

problem-solving situation and the students’ actions on     

a dynamic object or a dynamic representation/diagram. 

6. The addition and sum of two segments in a DGS 
environment 

Secondary students in Greece study the axiomatic 

foundation of Euclidean geometry from the first classes of 

high school. In terms of Euclid’s definitions “a straight 

line is a line which lies evenly with the points on itself” 

(Def. 4). Between the fundamental Euclid’s definitions 

they have heard, is the definition of the segment. The 

definition of a segment AB given in most Greek geometry 

textbooks is as follows: “segment AB is the figure which 

consists of the endpoints A, B and the set of points which 

belong to the portion of the line between these two 

endpoints”. The DGS environments have been designed to 
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take the Euclidean definitions and propositions into 

account. I use the term ‘dynamic’ point to refer to a point 

made in a DGS. A ‘dynamic’ point is a fundamental 

element in a dynamic construction. ‘Dynamic’ segment is a 

segment made in a DGS. According to the Geometer’s 

Sketchpad reference manual (2001) “points are the 

fundamental building blocks of classical geometry, and 

geometric figures such as lines and circles are defined in 

terms of points” (p.11). Hollebrands, Laborde & Straeser 

(2008, p.165) described the distinction between the three 

different kinds of points in a DGS environment: (a) a free 

point “can be directly dragged anywhere in the plane 

(degree of freedom 2)”, (b) a point on an object “can be 

dragged only on this object (degree of freedom 1)” and (c) a 

constructed point “cannot be grasped and dragged (degree 

of freedom 0) but moves only if an element of which it is 

dependent is dragged”. Hollebrands (2007) also mention 

that “[…] in the context of dragging, certain 

characteristics change and others remain the same and 

these behaviors are generally guided by the definition of 

the geometric object” (p.168).  In a previous study I 

defined the meaning of dynamic segment as follows 

(Patsiomitou, 2011): 
 

“The ‘dynamic’ segment is a portion of a straight line 

which does not consist of points. Dynamic points can be 

placed independently on the dynamic segment and 

move free with one degree of freedom on the path to 

which they belong. This means that a point placed on a 

segment that intrinsically is designed with two degrees 

of freedom is transformed to a segment object with one 

degree of freedom” (p. 365).   

 

All geometrical or algebraic objects in the Geometer’s 

Sketchpad environment operate in “a dependency 

diagram, a directed acyclic graph” (Jackiw & Finzer, 1993, 

p.295): The ‘given’ objects in a construction are the 

‘parents’ and they are free to move on the screen, in 

contradiction to dependent objects which are the ‘children’ 

of the objects on which they depend in some fashion, that 

are constrained. According to Sketchpad Help System in 

the software are available the objects mentioned in the fig. 

6, below:  

 

Figure 6. Objects available in Sketchpad 

The case of the addition of two segments in geometry 

represented by two separate objects identified by two 

letters, one for each edge of each segment (for example 

segments AB, CD) is more complex, because it includes 

both a figural and an algebraic entity. The figure of the 

segment which represents a concrete real “thing” is the 

figural part; the number which is the measure of the 

segments’ length (or the distance of the endpoints of the 

segment) represents the algebraic part.  In addition, the 

students have to represent the addition of segments with 

a concrete segment and then represent this action by 

means of a symbolic representation--namely, the way 

these segments are defined by letters (AB, CD etc.).  

The symbol “AB+CD” possesses a central role as the 

process of segment’s addition and as the concept of 

segments’ sum. The cognitive structure encloses the same 

mental objects (e.g. CD+AB= FG+EF if FG=CD and 

EF=AB). As a result, the construction, measurement and 

calculation of segments in a DGS environment differ from 

the same process in a static environment. Then, we can 

define an elementary geometrical procept. According to 

Sketchpad Help System: 

 

“The objects you can create in Sketchpad fit into 

several general categories. Some of the objects are 

purely geometric entities—points, lines, rays, 

segments, circles, arcs, interiors, loci, and some 

iterations. Other objects are either numeric or 

algebraic entities—measurements, parameters, 

coordinate systems, calculations, and functions. And 

finally, some objects in Sketchpad—captions and 

action buttons—are primarily used in descriptions, 

explanations, and presentations”.  

 

It is thus clear that the sum of the segments as an 

object derived from calculations in a DGS environment is 

an algebraic, geometric and “dynamic” entity. I shall 

break down the process of adding two segments in the 

DGS environment into two phases.  

Phase A. If we create two segments in the Geometer’s 

Sketchpad and then measure and calculate their sum, the 

actions on mathematical entities at one level become 

mathematical objects in their own right at another level 

(Piaget, 1972a, b). 

 

Figure 7. The addition of two segments in a DGS 
 

The calculation of segments is a process becoming 

reified as an object, which includes a few procedures, in 

the words of Gray & Tall (1991, 1994) who distinguished 

between “the specific procedure as an explicit sequence of 

steps and the input-output process where different 

procedures can have the same input-output”. Selecting 

the calculation command displays the calculator with 

which we can sum the segments by selecting the 



Patsiomitou                                                 International Journal for Educational and Vocational Studies, Vol. 1, No. 1, May 2019, pp. 31-46                           

 

39 
 

measurements of each, as illustrated in Figure 8a below. 
 

 
 

Figure 8a. The concept of sum of two 

segments in a DGS. 

Figure 8b. The concept of sum of 

two segments in a DGS. 

 

To construct objects in a DGS environment, we can use 

first-order parental objects, second-order child 

geometrical objects, and auxiliary objects. I shall try to list 

in the table below all the actions and symbols involved in 

the process of adding the segments, the sequence of 

actions and objects involved. I shall also report the 

theoretical construct and try to anticipate how students 

will understand and conceive of the process and the 

answers they will produce. 

The theoretical answers of Euclidean Geometry 

mentioned in the Table 1 are the following (Coxford & 

Usiskin, 1975): 

 

P1: If two distinct points are in a plane, the line determined 

by these points is a subset of the plane. (p.20 ) 

P2: Two points determine a line. (p. 21) 

P3: To each pair of points there corresponds a unique real 

number called the distance between the points.(p. 22) 

P4: Suppose A and B are points, then: (a) AB≥0, (b) AB=0 if 

and only if A=B and (c) AB is also the distance between 

B and A, that is AB=BA. (p. 24) 

P5: The segment with endpoints  A and B is denoted by AB 

and is the set whose elements are distinct points  A, B 

and all points between A and B. (p.26)  

P6: A line is an infinite set of points (p. 22)  

P7: A line is a set of points and contains at least two distinct 

points. (p. 18) 

P8: A circle is the set of all points in a plane at a fixed 

distance (the radius) from a fixed point (the center). 

(p.180)  

P9: Two radiuses of the same circle are congruent segments. 

P10: Congruent radiuses determine congruent circles.   

P11: Points E, F, G are collinear since they are all on line Ex. 

(p.19) 

P12: The midpoint of a segment AB is the point M in AB 

with AM=MB (p. 30)  

P13: The length of a segment is the distance between its 

endpoints. (p.26) 

P14: (Betweenness theorem). If a point B is between A and C, 

then AB+BC=AC.(p.26)  

P15: (Addition theorem) If B is on AC, then AC=AB+BC 

(p.375) 

 

Table 1. Actions and symbols involved in the process of adding the segments 

 

Generally speaking, if we construct a segment using 

the tools provided by the DGS software, this concrete 

segment is the parent object and the measurement the 

child object. In the previous example, points F, G cannot 

be altered by dragging due to their dependence on their 

parent objects. Dragging points A, B affects the position of 

point F (just as dragging points C, D affects the position of 

point G).  Students can understand that “if we modify 

segment AB, segment EF will be modified also”.  

In the Table 1 above a description has been done with 

regard to the objects and the actions. The anticipated 

answers of students during the interaction with the 

process lead to the following result: The transformation of 

all the objects mentioned above, leads the students to 

conceive the unaltered properties of the mixed entity. They 

can express a concept-in-action or theorem-in-action, 

through the reification of mathematical objects and the 

interiorization of the process of dynamic movement, 

counting and dragging the segments: this is a 

procept-in-action, meaning a process which leads to a 

concept-in-action or theorem-in-action. 

Phase B. The mode of constructing a figure in the 

software (e.g a square of side a) could be different from the 

mode students use to construct it on paper. For example: 

When a student works using static means, s/he is able to 

measure the length of side ‘a’ with a ruler. Afterwards 

s/he is able to use this measurement to construct either 

the next side of the square given that s/he knows the 
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geometrical properties of the shape or of another shape 

(for example a rectangle) whose one side is equal to ‘a’. 

This “measurement” method is not the method the 

software demonstrates for constructing a figure which 

does not mean that the software faces a constructional 

inability/disadvantage comparing it with static means. By 

forcing students to think of ways of constructing an equal 

segment, this methodological weakness can thus provoke 

a cognitive conflict in students, and in so doing raise the 

level of difficulty. One such way would be to define side ‘a’ 

as an arbitrary segment [i.e., a parameter] on the screen 

and then use it as a radius of a circle in the construction 

(Patsiomitou, 2008e, 2009a, b). This construction method 

inducts a different mental perception in the students with 

regard to construction in the software. In this way, the 

sides of the square/or rectangle cannot be modified from 

the vertices of the figure using the dragging modality. 

Instead, they depend on the modification of the initially 

defined segment ‘a’. The arbitrary segment ‘a’ could thus 

be confined as a non-collapsible compass to either the 

square or any figure whose a side is equal to ‘a’. This 

construction procedure depends on the students’ level of 

conceptual knowledge and cognitive abilities.  

If we create the segments’ addition, by defining the 

segments AB, CD using the parameters a, b (meaning, by 

setting a corresponding parameter to each segment, the 

parameter “a” for the segment AB and the parameter “b” 

for the segment CD) then we have created concrete 

invariant objects in a DGS environment. In order to create 

the parameters we can use the “create a new parameter” 

command from the Menu, Graph (Figure 9a). According to 

Sketchpad Help system  
“Parameters are simple given numeric values. Unlike 
measurements and calculations, they do not depend on 
other objects for their value. A parameter is defined by 
a single number and an optional unit”.  

 

  
Figure 9a. The addition of two 

segments in a DGS, using 

parameters 

Figure 9b. The addition of two 

segments in a DGS, using 

parameters 

 
Figure 10. Visualizing the concept of the sum of two segments in a DGS, using 

parameters. 

We can choose to construct a segment for example with 

length equal to 2cm, or with such a length as we wish. 

These parametrical segments can be transformed 

dynamically by transforming (e.g., by using animation) the 

parameters with which they have been created, meaning 

the parental objects in a continuous/or not process (Fig. 9b). 

Firstly, the animation on parameters turns the dynamic 

diagram to a more detailed and complex representation 

than the one we have created using the tools (e.g. segments, 

lines and circles). Points B, D have only one degree of 

freedom and can be dragged only on the path they belong. 

The figures can become larger or narrower, but it is not 

easy to change their orientation (for example, if the 

circle-path to which they belong becomes hidden). We can 

change the value of the parameter or define the domain 

values between which the parameter takes on values 

(Figure 10), meaning that the geometrical object depends 

on the values given to an algebraic object. The parameter is 

allowed to range over whatever domain I choose to define, 

and the mixed entity has been transformed into a symbolic 

parametrical and dynamic one (we can see the “animate 

parameters” label on screen, which allows parameters to be 

altered with this action affecting the figural part of the 

object). Secondly, the concept of parameters belongs to 

algebra. On the other hand, when we create a figure in a 

static environment, we never use a parameter to create the 

figure, just as we never define a segment as a parameter for 

use in our construction. Moreover, animating the 

parameters transforms the synthesis of the diagram into an 

“infinite” number of snapshots, which the user would 

probably not consider manipulating by her/himself. For the 

segments’ addition I can summarize the following:  
 
Process A-(direct) transformations 
on segments-objects  

  Process B- (indirect) 
transformations on segments 
-objects  

Transformation of the dynamic 
segments, results in the 
transformations of the segments’ 
distances and the segments’ sum. 
 

Transformation of the dynamic 
parameters (parents’ objects), 
results in the transformations of 
the segments’ distances and the 
segments’ sum 

Analysis of transformations Analysis of transformations 
Transformation of the geometrical 
objects results to the 
transformations of the algebraic 
objects and finally the 
transformation of the mixed-hybrid 
object.  

Transformation of the algebraic 
entities, results to the 
transformations of the algebraic 
objects and finally the 
transformation of the mixed-hybrid 
object. 
 

Table 2: The addition and the sum of two segments in a DGS 

 

In general, a concrete parameter defines the particular 

member of a function family. As the parameter changes the 

transformations of segments, as well as the transformations of 

the diagram’s synthesis appear on screen.  

In the examples mentioned above the segments AB=a, CD=b 

under the transformation T of the dynamic parameters will 

become the corresponding elements T (a), T (b). The dynamic 

objects created using parameters in the current study play a 

pivotal role in fostering/scaffolding understanding. Are these 

objects dynamic, or have we created “static” objects in a DGS 
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environment? What is their “static” role in a DGS environment? 

What are the transformations the concrete dynamic diagram and 

the objects created in this representation perform? Moreover, can 

we make a “construct” that appears invariant, even if we drag its 

visible points on screen? Does this diagram have the same 

properties?  In this case, we have created a “different” hybrid 

diagram. 

7. Dynamic-Hybrid diagrams   

We can construct a rectangle using: 

 Segments (tools) and perpendicular or parallel lines 

(commands) from the Construct menu of the DGS 

environment;  

 Segments (tools) and transformational processes 

from the Transform menu; 

 Parameters to represent its sides and its angles from 

the Graph menu.  

  

Figure 11a. Constructing a rectangle  Figure 11b. Constructing a rectangle 

 

 
Figure 11c. Constructing a rectangle Figure 11d. The detailed description of 

the construction in a “script view” 

 

In the images above, we can see a rectangle created in 

the Geometer’s Sketchpad environment; linking pages have 

been used to allow a user to visualize the sequential steps 

in its construction. The detailed description of the 

construction is visible in a “script view”, a custom tool I 

created by selecting all the dynamic objects. As we can see, 

in the script view, the order of the sequential actions are 

(Fig. 11d): (a) construction of a segment AB, (b) 

construction of two perpendicular lines j, k to AB passing 

through A and B respectively, (c) construction of a point F 

on the perpendicular line, (d) construction of a parallel line 

l to AB passing through point F, and (e) definition of the 

intersection between the parallel line l and the 

perpendicular line k. To keep construction similar to that of 

a static rectangle, the perpendicular lines (auxiliary lines) 

have been hidden.  

In the second image (Fig. 11b), we can see just three 

objects on screen: the line AB and the points F, C. The 

concrete construction step differentiates the construction in 

the DGS environment from the construction in a static 

environment. Point C, for example, is dependent and 

invariant object. If we drag point C the dynamic rectangle 

becomes a static image, which can be moved without 

alteration on screen. The custom tool demonstrates the 

hybrid object C as an intersection of points, as well as the 

degrees of freedom that these points have. Point A has two 

degrees of freedom and point F has one degree since it can 

be dragged only on line j. If we delete point A, the whole 

construction will be deleted. I have created a dynamic 

diagram which consists of dynamic or hybrid objects and 

depends on the order in which these objects were created. 

We have a few free “given or parents” objects for the 

construction and dependent “children objects”. For example: 

if we drag points A, B, F the dynamic object becomes an 

active representation and can be modified. If we create the 

rectangle using parameters and tools, the dynamic object is 

more complex and consists of additional hybrid objects 

(Fig.12a, b). Point C and B are two vertices of the rectangle, 

which cannot be transformed on screen using dragging. We 

can animate parameters and transform the hybrid diagram 

into a dynamic diagram. If we animate parameters, we can 

see the alteration in the rectangle’s lengths. Figure 12b 

illustrates a parametrical rectangle which has been 

transformed into a square. Monaghan (2000) supports that 

most students “recognize a rectangle where the vertical 

width is greater than the horizontal length […]. This 

perception, of course, is commonly held but is 

mathematically inaccurate as it ignores the square as a 

special case of rectangle” (Monaghan, 2000, pp. 186-187).  

 

  

Figure 12a. Constructing a rectangle 

using parameters  

Figure 12b. Transforming the 

parametrical sides of the figure 

   

Figure 12c. Constructing the midpoints 

of the rectangle’s sides 

Figure 12d. Constructing subfigures 

in the rectangle  

 

The modification of the figural part of the rectangle is in 

correlation with the transformation of the parameters in 

order to become equal. This action on the algebraic objects 

can help the students to grasp the meaning of square as a 

rectangle. For this, a student has the opportunity to 

visualize a combination of transformations (e.g., 

transformation of sides’ lengths, animation of sides’ 

parameters etc.). It is definitely a dynamic diagram, but if 
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we do not animate the parameters it is a static hybrid 

diagram because, it has been intrinsically defined with 

concrete length of sides that cannot be modified by 

dragging. The object is a hybrid object due to the 

dependence of the reported above point from its parent’s 

objects. 

If we construct the midpoints of the rectangle’s sides 

(Fig. 12d, 13), they divide the whole figure into subfigures 

(e.g. sub-rectangles, right triangles, isosceles triangles, or 

trapeziums), indicating the rectangles’ lines of symmetry 

(meaning the lines which the construction of the 

symmetrical point for any point of the figure leave the 

figure unmodified or the imaginary line or axis that passes 

through the centre of the object and divides it into identical 

halves). The students can conceive the objects both 

operationally, as they perform actions on them (physically 

or mentally), and structurally with concrete properties (for 

example, the line of symmetry EG is perpendicular to AB, 

CD, parallel to the sides AD, BC and passes from the 

intersection point of the diagonals). Many objects can be 

perceived if we implement permanent annotation (e.g., 

coloring the figures) and transform the figure using 

dragging (Fig. 13). 

 

Figure 13. Constructing subfigures in the rectangle, using permanent 
annotation 

 

For example, from a diagram with congruent triangles 

which occurred from a rotation through 90 degrees (Fig. 

15a, b, c, d), the students can develop two subgoals (e.g., 

Patsiomitou, 2008b, c, 2010, 2012a): firstly, proving that 

the sides are equal and, secondly--stemming from the 

segment’s perpendicularity, proving that the sides are 

parallel. This is to say they have developed a conceptual 

object: the same objects act as parallel lines and as equal 

sides.  

 

Figure 14. Developing subgoals and goals  

  

Figure 15a, b, c, d. Dynamic linking active diagrams (Patsiomitou, 2008c, 2010, 

p.12) 

Using actions on objects and performing processes, they 

achieved their goal of developed the concept-in-action of a 

parallelogram (Fig. 14). Another example of a students’ 

verbal inductive formulation during a previous study 

(Patsiomitou, 2008b, 2010, p.12) is the following. 

 

Figure 16. Dynamic linking active diagrams (Patsiomitou, 2008c, 2010, p.12) 

 

The students investigate the modifications made to the 

calculations of the segments to identify the different 

positions of point K. Changing the position of point K by 

dragging it is dynamically linked to the changes/ 

modifications in the resultant angles in the table and the 

upcoming modification to the sum of the segments. This 

process encourages students to observe that the minimal 

sum is observed when the angles are at 120o (Fig. 16). The 

students are usually led to draw rough conclusions 

regarding the position of the point under investigation; for 

instance, that it is the circumcentre of the triangle ABC. 

The construction of the circumcentre and the 

measurements reveal cognitive conflicts in the students. 

The addition of a new line in the table for new 

measurements every time point K is dragged can lead 

students to posit inductive formulations which converge 

on the angles between the segments being 120 degrees. 

During this process, we have a reversible (bi-directional) 

transformation of a) the geometrical into an algebraic 

model, and b) the algebraic conclusions drawn from 

comparisons between on-screen dragging on the 

geometrical representation. 

8. A dynamic iterated procept-in-action 

In the diagram below, I have constructed a golden 

rectangle using two important procedures (Patsiomitou, 

2006b, p. 61, 2008a, in Greek): “creating a custom tool that 

repeats the ratio 1, 61803 (=number φ), and the iteration 

process that repeats the whole procedure and the 

measurements and calculations displayed in the table”. In 

this construction, we can view algebraic objects, 

diagrammatic objects and tabular representations, along 

with parametrical objects used operationally and 
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structurally, and dynamic or hybrid objects. In the tabular 

representation, we can view the results of measurements 

and calculations repeated thanks to the iteration process, 

which generates final for initial objects on a one-to-one 

basis. According to Patsiomitou (2007) “Through the 

application of the custom tool the possibility is given to 

the user to acquire an inductive way of thinking for the 

finite steps of the construction but the generalisation with 

regard to the constructional result can be achieved from 

the process of iteration  which inductively renders the 

construction theoretically to infinity (Patsiomitou, 2005, 

2006a, 2009).  

This function of the software also constitutes a certain 

crucial and essential particularity, while the construction 

with a compass and a ruler as formal tools of static 

geometry has a beginning and an end. In the software, via 

the process of iteration we have the potential of the 

constructions thus becoming more complex being in 

theory rendered inductively to infinity. The result of the 

process of iteration is the construction of the tables that 

repeat the process of initial measurements and 

calculations in dynamic connection with the shape, thus 

increasing (or decreasing) the level of the process of 

iteration while the software adds (or removes) the next 

level of measurements (or even calculations), whereas in 

the first column of the table the sequence of the natural 

numbers is presented. In that way through this operation, 

the environment of the software promotes the 

investigation of the sequences. The iteration process by 

functioning thus has integrated or embodied the meaning 

of sequence while there is a direct connection between the 

user’s perception and the abstract mathematical meaning. 

The process of animation can produce the changes in the 

tabulated measurements (calculations) that allow the 

user to examine the dynamic process. These changes come 

as result of the fluctuations in the size of an 

artefact-fractal which have the possibility of increasing 

(decreasing) and altering orientation”. 

 
Figure 17a. Creating a golden rectangle using a custom tool (Patsiomitou, 2006, p. 

61, in Greek) and the iteration process 

 

The dynamic linking of the tabulated measurements 

from the first two columns results in the plotted points 

illustrated in Figure 17b. The plotted points are 

dynamically linked to both the figural object and the 

tabular representation, but cannot be moved or dragged, 

and are left unaffected if we drag point G (a DGS object 

with two degrees of freedom), even if the measurements in 

the tabular representation are affected. The plotted points 

are dynamic-hybrid objects (Fig. 17c). 

 
Figure 17b. Dynamic linking of the tabulated measurements with the plotted points  

 

In other words, it is a geometric function which repeats 

one-to-one transformations on algebraic, geometric and 

dynamic objects. The concepts-in-action (and 

theorems-in-action) which occur during the procedure are 

the results of dynamic elementary procepts-in-action. They 

are intrinsically dynamic and their impact on students’ 

understanding of the meaning of sequence is crucial 

(Patsiomitou, 2005, in Greek).  

For example, as I mentioned in previous works (e.g., 

Patsiomitou, 2005, 2007) “The surprise was made by a 

female-student who, while passively watching and not 

participating in the duration of the process she  

comprehended  that “as N increases (natural numbers), E 

(the area) is continuously reduced” a fact which she 

expressed verbally and repeated it in writing. From this, 

we may conclude that she momentarily overcame her fear 

of mathematics, after she had a verbal interaction with the 

remaining members of the team and was led towards the 

comprehension of the meaning of limit only by the 

representations and the reaction towards the computer 

software”.  

 
Figure 17c. Dynamic linking of the tabulated measurements with the plotted points 

 

Discussion  

Firstly, I will discuss the different kinds of 

transformations and transformational results that ensue 

from implementing dragging on screen.  

 Dragging and tracing of a geometric object (for example 

a point, segment or line) 

Dragging a point on screen results in the 

transformation of its position and the simultaneous 

appearance of traces on screen tracking the path the point 

has followed or the tracks that a line passes due to 

dragging transformations. This action reveals in the 

determination of a basic property of the diagram that 

cannot be directly perceived from the diagram in its 
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hybrid form, or a property of the diagram that remain 

stable and unaltered.  

 Dragging and measuring (or calculations) the 

geometric object. 

Dragging a point on screen leads to a change in the 

measurements of the object that we have chosen to 

display and in its calculations. In this case, the 

measurements change, but the calculations may do one of 

two things: they may remain unchanged, indicating a 

stability that demonstrates the validity of a theorem or 

general theoretical approach (a proposal or a confirmed 

porisma--meaning a conclusion or an inference) or they 

may change, allowing the user to observe and draw 

conclusions from empirical results. 

 Dragging and animating, or dragging, animating and 

tracing objects  

A point on an object is dragged--for example, the 

vertex point of a triangle to which a point on one side is 

connected with motion. The animation of the diagram and 

the simultaneous dragging allow us to understand a 

condition which is not defined during the diagram’s 

structuring process. For example, it may make us aware 

of a theoretical limitation that has not been determined or 

established before, but which appears on the diagram 

when it is dragged. This condition leads into an 

investigation of the validity of a theorem or proposal. 

Other complex transformations include:  dragging and 

annotating a dynamic figure, dragging a custom tool to 

reveal a complex construction and the 

measurements/calculations of the incorporated objects, 

dragging an iterated figure and dragging a 

rotated/translated/or reflected figure (Fig. 15a, b, c, d, 17c). 

The diagrams’ reconfiguration through the complex 

synthesis of combinations of transformations can lead to a 

continuous interaction of discursive, visual and 

operational apprehension (e.g., Patsiomitou, 2008b, c, 

2010, 2011, 2012a, b, 2013, 2014, 2018b). In the words of 

Dina van Hiele (1984) the diagram goes through a 

metamorphosis as a result of the manipulations of 

reconfigurations “followed by a phenomenological analysis 

and an explicating of its properties: it becomes what we 

call a [dynamic] geometric symbol” (Dina van Hiele in 

Fuys et al., 1984, p.221). 

Figure 18. A procept-in-action during instrumental genesis 

 

The synthesis of the transformations results to the 

construction of instruments and instrumented action 

schemes which denote the existence of concepts-in-actions 

and theorems-in-action. The students can manipulate the 

dynamic diagrams during instrumental genesis. The 

dynamic section’s “metamorphosis” could be considered as 

a conceptual entity while its use can allow the properties 

of the dynamic- hybrid diagrams to be analyzed and 

synthesized back in a conceptual object (Sfard, 1991). 

Building on the above, I think there is a continuous 

process ongoing in students’ mind as they create a concept. 

The meaning of ‘procept’ is thus dynamic in a DGS 

environment; adapting its meaning to a ‘procept-in-action’ 

for the DGS environment could thus support the 

appearance of operational invariants during the 

problem-solving situation and the students’ actions on a 

dynamic object or a dynamic representation/diagram. As a 

dynamic composition changes in the linking pages, there 

is a transformation of the (student-) user’s verbal 

formulations due to his/her organized actions on dynamic 

objects. Consequently, students can develop conceptual 

transformations during the process of dynamic geometry 

problem-solving as a means of achieving meaningful and 

deep learning and/or increasingly conceptual model 

building (e.g., Greeno, 1983; Mayer, 2000). 
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