Analisis Berat Badan dan Tinggi Badan Terhadap Status Gizi

Fajriana, Maryana

Jurusan Teknik Informatika Universitas Malikussaleh

Abstrak— Tujuan penelitian ini adalah untuk melihat pengaruh berat badan dan tinggi badan terhadap status gizi. Data penelitian ini dianalisis menggunakan regresi linier berganda dengan menggunakan software SPSS 16. Dari hasil penelitian ini didapatkan persamaan regresi : \[Y = 40.246 + 0.397X_1 + (-0.253)X_2 \]. Analisis Korelasi berganda (R), dengan nilai R sebesar 0.994. Analisis Determinasi (R2), dengan nilai R2 (R Square) sebesar 0.988 atau 98.8%. Kemudian dilanjutkan dengan uji Koefisien Regresi Secara Bersama-sama (Uji F), dan Uji koefisien Regresi secara Parsial (Uji T).

Keywords— Berat Badan, Tinggi Badan Gizi, Regresi.

I. PENDAHULUAN

Berat Badan adalah parameter antropometri yang sangat labil. Dalam keadaan normal, di mana keadaan kesehatan baik dan keseimbangan anatara konsumsi dan kebutuhan zat gizi terjamin, berat badan berkembang mengikuti pertambahan umur. Sebaliknya dalam keadaan yang abnormal, terdapat dua kemungkinan perkembangan berat badan, yaitu dapat berkembang cepat atau lebih lambat dari keadaan normal. Berat badan harus selalu dimonitor agar memberikan informasi yang memungkinkan intervensi gizi yang preventif sedini mungkin guna mengatasi kecenderungan penurunan atau penambahan berat badan yang tidak dikehendaki.

Tujuan penelitian ini adalah untuk melihat pengaruh berat badan dan tinggi badan terhadap status gizi. Data penelitian ini dianalisis menggunakan regresi linier berganda dengan menggunakan software SPSS 16.

II. TINJAUAN KEPUSTAKAAN

Gizi adalah suatu proses organisme dalam menggunakan bahan makanan melalui proses pencernaan, penyerapan, transportasi, penyimpanan metabolism dan pembuangan bahan-bahan yang tidak dibutuhkan oleh tubuh untuk pemeliharaan hidup, pertumbuhan, fungsi organ tubuh dan memproduksi energy (suparisa, dkk, 2001).

Status gizi adalah keadaan yang diakibatkan oleh status keseimbangan antara jumlah asupan zat gizi dan jumlah yang dibutuhkan oleh tubuh untuk berbagai fungsi biologis: yaitu pertumbuhan fisik, perkembangan, aktivitas, pemeliharaan kesehatan, dan lainnya (Suyatno, 2009).

Nilai gizi dan penentuan status gizi dapat dihitung dengan:

\[IMT = \frac{\text{Berat badan (kg)}}{\left(\text{Tinggi Badan (m)}\right)^2} \]

Analisis Regresi Linier Berganda

Analisis Regresi Linier Berganda adalah hubungan secara linier antara dua atau lebih variable independent (X1, X2,..., Xn) dengan variable dependent (Y). Analisis ini untuk mengetahui arah hubungan atara variable independent
(X₁, X₂, ..., Xₙ) dengan variable dependent (Y) apakah masing-masing berhubungan positif atau negative dan untuk memprediksi nilai variable dependen apabila nilai variable independent mengalami kenaikan atau penurunan.

Analisis Korelasi Ganda

Analisis ini digunakan untuk mengetahui hubungan antara dua atau lebih variable independent terhadap variable dependent secara serentak. Koefisien ini menunjukkan seberapa besar hubungan antara variable independent terhadap variable dependent secara serentak. Nilai R berkisar antara 0 dan 1. Nilai semakin mendekati 1 berarti hubungan yang terjadi semakin kuat, sebaliknya nilai semakin mendekati 0 maka hubungan semakin lemah. Menurut Sugiono (2007) pedoman untuk memberikan interpretasi koefisien korelasi sebagai berikut:

- 0.00 - 0.199 = sangat rendah
- 0.20 - 0.399 = rendah
- 0.40 - 0.599 = sedang
- 0.60 - 0.799 = kuat
- 0.80 - 1.000 = sangat kuat

Analisis Determinasi (R²)

Analisis ini dalam regresi lineer ganda digunakan untuk mengetahui persentase sumbangan pengaruh variable independent secara terhadap variable dependent. Koefisien ini menunjukkan seberapa besar persentase variasi variable independent yang digunakan dalam model mampu menjelaskan variable dependent. R² = 0, maka tidak ada sedikitpun persentase sumbangan pengaruh yang diberikan variable independent terhadap variable dependent atau variasi variable independent yang digunakan dalam model tidak menjelaskan sedikitpun variasi variable dependent. R² = 1, maka persentase sumbangan pengaruh yang diberikan variable independent terhadap variable dependent atau variasi variable independent yang digunakan dalam model menjelaskan 100% variasi variable dependent.

Uji Koefisien Regresi Secara bersama-sama

Uji ini digunakan untuk mengetahui apakah variable independent secara bersama-sama berpengaruh secara signifikan terhadap variabel dependent. Atau untuk mengetahui apakah model regresi dapat digunakan untuk memprediksi variabel dependent atau tidak.

Langkah-langkah pengujiann:
1. Merumuskan Hipotesis
2. Menentukan tingkat signifikan
3. Menentukan F hitung
4. Menentukan F table
5. Kriteria Pengujian
 - Ho diterima jika F hitung < F table dan sebaliknya

Langkah-langkah pengujiann:
1. Merumuskan Hipotesis
2. Menentukan tingkat signifikan
3. Menentukan t hitung
4. Menentukan t table
5. Kriteria Pengujian
 - Ho diterima jika |t| tabelle < t hitung dan sebaliknya

III. METODOLOGI PENELITIAN

Analisis Linear berganda merupakan hubungan secara linear antara dua variable atau lebih variable bebas dengan variable terikat. Analisis linear berganda adalah analisis untuk mencari dan mengetahui apakah ada hubungan antara variable independent dengan variable dependent, serta untuk mengetahui apakah masing-masing variable independent saling berhubungan positif atau berhubungan negative.

1. Analisis Korelasi Ganda (R).
2. Analisis Determinasi (R²)
4. Uji koefisien Regresi secara Parsial.

Tabel 1. Data

<table>
<thead>
<tr>
<th>NO</th>
<th>Status Gizi</th>
<th>Berat Badan</th>
<th>Tinggi badan(cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22.1</td>
<td>42</td>
<td>138</td>
</tr>
<tr>
<td>2</td>
<td>21.2</td>
<td>44</td>
<td>144</td>
</tr>
<tr>
<td>3</td>
<td>19.3</td>
<td>40</td>
<td>144</td>
</tr>
<tr>
<td>4</td>
<td>21.4</td>
<td>45</td>
<td>145</td>
</tr>
<tr>
<td>5</td>
<td>16.6</td>
<td>35</td>
<td>145</td>
</tr>
<tr>
<td>6</td>
<td>29.6</td>
<td>63</td>
<td>146</td>
</tr>
<tr>
<td>7</td>
<td>18.0</td>
<td>39</td>
<td>147</td>
</tr>
<tr>
<td>8</td>
<td>23.1</td>
<td>50</td>
<td>147</td>
</tr>
<tr>
<td>9</td>
<td>26.0</td>
<td>57</td>
<td>148</td>
</tr>
<tr>
<td>10</td>
<td>20.5</td>
<td>45</td>
<td>148</td>
</tr>
<tr>
<td>11</td>
<td>19.6</td>
<td>43</td>
<td>148</td>
</tr>
<tr>
<td>12</td>
<td>18.7</td>
<td>41</td>
<td>148</td>
</tr>
<tr>
<td>13</td>
<td>20.1</td>
<td>44</td>
<td>148</td>
</tr>
<tr>
<td>14</td>
<td>27.6</td>
<td>62</td>
<td>150</td>
</tr>
<tr>
<td>15</td>
<td>22.2</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>16</td>
<td>15.1</td>
<td>34</td>
<td>150</td>
</tr>
<tr>
<td>17</td>
<td>19.6</td>
<td>44</td>
<td>150</td>
</tr>
<tr>
<td>18</td>
<td>18.2</td>
<td>41</td>
<td>150</td>
</tr>
<tr>
<td>19</td>
<td>21.9</td>
<td>50</td>
<td>151</td>
</tr>
<tr>
<td>20</td>
<td>17.5</td>
<td>40</td>
<td>151</td>
</tr>
<tr>
<td>21</td>
<td>19.7</td>
<td>45</td>
<td>151</td>
</tr>
<tr>
<td>22</td>
<td>28.1</td>
<td>64</td>
<td>151</td>
</tr>
<tr>
<td>23</td>
<td>21.5</td>
<td>49</td>
<td>151</td>
</tr>
<tr>
<td>24</td>
<td>19.0</td>
<td>44</td>
<td>152</td>
</tr>
<tr>
<td>25</td>
<td>17.3</td>
<td>40</td>
<td>152</td>
</tr>
<tr>
<td>26</td>
<td>20.9</td>
<td>49</td>
<td>153</td>
</tr>
<tr>
<td>27</td>
<td>23.9</td>
<td>56</td>
<td>153</td>
</tr>
<tr>
<td>28</td>
<td>20.2</td>
<td>48</td>
<td>154</td>
</tr>
<tr>
<td>NO</td>
<td>Status Gizi</td>
<td>Berat Badan</td>
<td>Tinggi badan(cm)</td>
</tr>
<tr>
<td>----</td>
<td>-------------</td>
<td>-------------</td>
<td>------------------</td>
</tr>
<tr>
<td>29</td>
<td>22.8</td>
<td>54</td>
<td>154</td>
</tr>
<tr>
<td>30</td>
<td>20.7</td>
<td>49</td>
<td>154</td>
</tr>
<tr>
<td>31</td>
<td>20.0</td>
<td>48</td>
<td>155</td>
</tr>
<tr>
<td>32</td>
<td>29.1</td>
<td>70</td>
<td>155</td>
</tr>
<tr>
<td>33</td>
<td>23.3</td>
<td>56</td>
<td>155</td>
</tr>
<tr>
<td>34</td>
<td>26.2</td>
<td>63</td>
<td>155</td>
</tr>
<tr>
<td>35</td>
<td>20.8</td>
<td>50</td>
<td>155</td>
</tr>
<tr>
<td>36</td>
<td>17.3</td>
<td>42</td>
<td>156</td>
</tr>
<tr>
<td>37</td>
<td>23.8</td>
<td>58</td>
<td>156</td>
</tr>
<tr>
<td>38</td>
<td>22.3</td>
<td>55</td>
<td>157</td>
</tr>
<tr>
<td>39</td>
<td>19.1</td>
<td>47</td>
<td>157</td>
</tr>
<tr>
<td>40</td>
<td>19.2</td>
<td>48</td>
<td>158</td>
</tr>
<tr>
<td>41</td>
<td>20.4</td>
<td>51</td>
<td>158</td>
</tr>
<tr>
<td>42</td>
<td>18.0</td>
<td>45</td>
<td>158</td>
</tr>
<tr>
<td>43</td>
<td>21.2</td>
<td>53</td>
<td>158</td>
</tr>
<tr>
<td>44</td>
<td>22.0</td>
<td>55</td>
<td>158</td>
</tr>
<tr>
<td>45</td>
<td>23.3</td>
<td>59</td>
<td>159</td>
</tr>
<tr>
<td>46</td>
<td>21.0</td>
<td>53</td>
<td>159</td>
</tr>
<tr>
<td>47</td>
<td>16.6</td>
<td>42</td>
<td>159</td>
</tr>
<tr>
<td>48</td>
<td>18.2</td>
<td>46</td>
<td>159</td>
</tr>
<tr>
<td>49</td>
<td>19.8</td>
<td>50</td>
<td>159</td>
</tr>
<tr>
<td>50</td>
<td>18.4</td>
<td>47</td>
<td>160</td>
</tr>
<tr>
<td>51</td>
<td>23.0</td>
<td>59</td>
<td>160</td>
</tr>
<tr>
<td>52</td>
<td>19.5</td>
<td>50</td>
<td>160</td>
</tr>
<tr>
<td>53</td>
<td>16.4</td>
<td>42</td>
<td>160</td>
</tr>
<tr>
<td>54</td>
<td>18.9</td>
<td>49</td>
<td>161</td>
</tr>
<tr>
<td>55</td>
<td>20.4</td>
<td>53</td>
<td>161</td>
</tr>
<tr>
<td>56</td>
<td>19.7</td>
<td>51</td>
<td>161</td>
</tr>
<tr>
<td>57</td>
<td>27.0</td>
<td>70</td>
<td>161</td>
</tr>
<tr>
<td>58</td>
<td>19.1</td>
<td>50</td>
<td>162</td>
</tr>
<tr>
<td>59</td>
<td>21.1</td>
<td>56</td>
<td>163</td>
</tr>
<tr>
<td>60</td>
<td>19.9</td>
<td>53</td>
<td>163</td>
</tr>
<tr>
<td>61</td>
<td>17.7</td>
<td>47</td>
<td>163</td>
</tr>
<tr>
<td>62</td>
<td>22.2</td>
<td>59</td>
<td>163</td>
</tr>
<tr>
<td>63</td>
<td>24.5</td>
<td>65</td>
<td>163</td>
</tr>
<tr>
<td>64</td>
<td>18.6</td>
<td>50</td>
<td>164</td>
</tr>
<tr>
<td>65</td>
<td>19.7</td>
<td>53</td>
<td>164</td>
</tr>
<tr>
<td>66</td>
<td>17.1</td>
<td>46</td>
<td>164</td>
</tr>
<tr>
<td>67</td>
<td>18.2</td>
<td>49</td>
<td>164</td>
</tr>
<tr>
<td>68</td>
<td>20.2</td>
<td>55</td>
<td>165</td>
</tr>
<tr>
<td>69</td>
<td>18.4</td>
<td>50</td>
<td>165</td>
</tr>
<tr>
<td>70</td>
<td>17.6</td>
<td>48</td>
<td>165</td>
</tr>
<tr>
<td>71</td>
<td>16.9</td>
<td>46</td>
<td>165</td>
</tr>
<tr>
<td>72</td>
<td>22.1</td>
<td>61</td>
<td>166</td>
</tr>
<tr>
<td>73</td>
<td>19.2</td>
<td>53</td>
<td>166</td>
</tr>
<tr>
<td>74</td>
<td>25.4</td>
<td>70</td>
<td>166</td>
</tr>
<tr>
<td>75</td>
<td>18.5</td>
<td>51</td>
<td>166</td>
</tr>
<tr>
<td>76</td>
<td>15.6</td>
<td>43</td>
<td>166</td>
</tr>
<tr>
<td>77</td>
<td>22.2</td>
<td>62</td>
<td>167</td>
</tr>
<tr>
<td>78</td>
<td>18.3</td>
<td>51</td>
<td>167</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NO</th>
<th>Status Gizi</th>
<th>Berat Badan</th>
<th>Tinggi badan(cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>79</td>
<td>17.6</td>
<td>49</td>
<td>167</td>
</tr>
<tr>
<td>80</td>
<td>16.1</td>
<td>45</td>
<td>167</td>
</tr>
<tr>
<td>81</td>
<td>16.9</td>
<td>47</td>
<td>167</td>
</tr>
<tr>
<td>82</td>
<td>24.9</td>
<td>71</td>
<td>169</td>
</tr>
<tr>
<td>83</td>
<td>21.0</td>
<td>60</td>
<td>169</td>
</tr>
<tr>
<td>84</td>
<td>20.4</td>
<td>59</td>
<td>170</td>
</tr>
<tr>
<td>85</td>
<td>17.6</td>
<td>51</td>
<td>170</td>
</tr>
<tr>
<td>86</td>
<td>19.7</td>
<td>57</td>
<td>170</td>
</tr>
<tr>
<td>87</td>
<td>18.7</td>
<td>54</td>
<td>170</td>
</tr>
<tr>
<td>88</td>
<td>19.2</td>
<td>56</td>
<td>171</td>
</tr>
<tr>
<td>89</td>
<td>18.1</td>
<td>53</td>
<td>171</td>
</tr>
<tr>
<td>90</td>
<td>18.8</td>
<td>55</td>
<td>171</td>
</tr>
<tr>
<td>91</td>
<td>18.6</td>
<td>55</td>
<td>172</td>
</tr>
<tr>
<td>92</td>
<td>15.5</td>
<td>46</td>
<td>172</td>
</tr>
<tr>
<td>93</td>
<td>19.3</td>
<td>57</td>
<td>172</td>
</tr>
<tr>
<td>94</td>
<td>19.0</td>
<td>57</td>
<td>173</td>
</tr>
<tr>
<td>95</td>
<td>18.7</td>
<td>56</td>
<td>173</td>
</tr>
<tr>
<td>96</td>
<td>18.5</td>
<td>56</td>
<td>174</td>
</tr>
<tr>
<td>97</td>
<td>20.8</td>
<td>63</td>
<td>174</td>
</tr>
<tr>
<td>98</td>
<td>16.9</td>
<td>53</td>
<td>177</td>
</tr>
<tr>
<td>99</td>
<td>24.9</td>
<td>78</td>
<td>177</td>
</tr>
<tr>
<td>100</td>
<td>15.7</td>
<td>51</td>
<td>180</td>
</tr>
</tbody>
</table>

Sumber: Skripsi Fajriana, 2001

IV. HASIL DAN PEMBAHASAN

Dengan menggunakan bantuan Software SPSS 16, dapat dilakukan adalah sebagai berikut:
Persamaan regresinya adalah sebagai berikut:
\[Y = 40.246 + 0.397X_1 + (-0.253)X_2 \]

Tabel 2. Hasil Analisis Regresi Linear Berganda.

<table>
<thead>
<tr>
<th>Model</th>
<th>Standardized Coefficients</th>
<th>Unstandardized Coefficients</th>
<th>t</th>
<th>Sig</th>
<th>Collinearity Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Constant)</td>
<td>40.246</td>
<td>0.011</td>
<td>65.914</td>
<td>0</td>
<td>0.811</td>
</tr>
<tr>
<td>X1</td>
<td>0.397</td>
<td>0.005</td>
<td>1.058</td>
<td>0.181</td>
<td>0.811</td>
</tr>
<tr>
<td>X2</td>
<td>-0.253</td>
<td>0.004</td>
<td>-0.743</td>
<td>0.0000</td>
<td>0.811</td>
</tr>
</tbody>
</table>

a. Dependent Variable: Y
<table>
<thead>
<tr>
<th>Case Number</th>
<th>Std. Residual</th>
<th>Y</th>
<th>Predicted Value</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.457</td>
<td>22.1</td>
<td>21.9462</td>
<td>0.15381</td>
</tr>
<tr>
<td>2</td>
<td>-0.058</td>
<td>21.2</td>
<td>21.2196</td>
<td>-0.01962</td>
</tr>
<tr>
<td>3</td>
<td>-0.983</td>
<td>19.3</td>
<td>19.6311</td>
<td>-0.331</td>
</tr>
<tr>
<td>4</td>
<td>0.109</td>
<td>21.4</td>
<td>21.3633</td>
<td>0.0367</td>
</tr>
<tr>
<td>5</td>
<td>-2.352</td>
<td>16.6</td>
<td>17.3917</td>
<td>-0.79174</td>
</tr>
<tr>
<td>6</td>
<td>3.985</td>
<td>29.6</td>
<td>28.2586</td>
<td>1.34137</td>
</tr>
<tr>
<td>7</td>
<td>-1.406</td>
<td>18</td>
<td>18.4734</td>
<td>-0.4734</td>
</tr>
<tr>
<td>8</td>
<td>0.766</td>
<td>23.1</td>
<td>22.8421</td>
<td>0.25788</td>
</tr>
<tr>
<td>9</td>
<td>1.875</td>
<td>26</td>
<td>25.3687</td>
<td>0.63126</td>
</tr>
<tr>
<td>10</td>
<td>-0.306</td>
<td>20.5</td>
<td>20.6029</td>
<td>-0.10286</td>
</tr>
<tr>
<td>11</td>
<td>-0.62</td>
<td>19.6</td>
<td>19.8085</td>
<td>-0.20855</td>
</tr>
<tr>
<td>12</td>
<td>-0.933</td>
<td>18.7</td>
<td>19.0142</td>
<td>-0.31423</td>
</tr>
<tr>
<td>13</td>
<td>-0.314</td>
<td>20.1</td>
<td>20.2057</td>
<td>-0.1057</td>
</tr>
<tr>
<td>14</td>
<td>2.235</td>
<td>27.6</td>
<td>26.8476</td>
<td>0.75244</td>
</tr>
<tr>
<td>15</td>
<td>0.351</td>
<td>22.2</td>
<td>22.0817</td>
<td>0.11832</td>
</tr>
<tr>
<td>16</td>
<td>-1.863</td>
<td>15.1</td>
<td>15.7272</td>
<td>-0.62718</td>
</tr>
<tr>
<td>17</td>
<td>-0.293</td>
<td>19.6</td>
<td>19.6987</td>
<td>-0.09874</td>
</tr>
<tr>
<td>18</td>
<td>-0.913</td>
<td>18.2</td>
<td>18.5073</td>
<td>-0.30728</td>
</tr>
<tr>
<td>19</td>
<td>0.213</td>
<td>21.9</td>
<td>21.8282</td>
<td>0.0718</td>
</tr>
<tr>
<td>20</td>
<td>-1.059</td>
<td>17.5</td>
<td>17.8566</td>
<td>-0.35664</td>
</tr>
<tr>
<td>21</td>
<td>-0.423</td>
<td>19.7</td>
<td>19.8424</td>
<td>-0.14242</td>
</tr>
<tr>
<td>22</td>
<td>2.114</td>
<td>28.1</td>
<td>27.3884</td>
<td>0.71161</td>
</tr>
<tr>
<td>23</td>
<td>0.205</td>
<td>21.5</td>
<td>21.431</td>
<td>0.06895</td>
</tr>
<tr>
<td>24</td>
<td>-0.57</td>
<td>19</td>
<td>19.1918</td>
<td>-0.19179</td>
</tr>
<tr>
<td>25</td>
<td>-0.901</td>
<td>17.3</td>
<td>17.6032</td>
<td>-0.30316</td>
</tr>
<tr>
<td>26</td>
<td>-0.072</td>
<td>20.9</td>
<td>20.9241</td>
<td>-0.02409</td>
</tr>
<tr>
<td>27</td>
<td>0.582</td>
<td>23.9</td>
<td>23.7042</td>
<td>0.19582</td>
</tr>
<tr>
<td>28</td>
<td>-0.218</td>
<td>20.2</td>
<td>20.2735</td>
<td>-0.07345</td>
</tr>
<tr>
<td>29</td>
<td>0.427</td>
<td>22.8</td>
<td>22.6564</td>
<td>0.14361</td>
</tr>
<tr>
<td>30</td>
<td>0.087</td>
<td>20.7</td>
<td>20.6706</td>
<td>0.02939</td>
</tr>
<tr>
<td>31</td>
<td>-0.059</td>
<td>20</td>
<td>20.02</td>
<td>-0.01997</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case Number</th>
<th>Std. Residual</th>
<th>Y</th>
<th>Predicted Value</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>1.018</td>
<td>29.1</td>
<td>28.7574</td>
<td>0.34259</td>
</tr>
<tr>
<td>33</td>
<td>0.305</td>
<td>23.3</td>
<td>23.1972</td>
<td>0.10278</td>
</tr>
<tr>
<td>34</td>
<td>0.662</td>
<td>26.2</td>
<td>25.9773</td>
<td>0.22268</td>
</tr>
<tr>
<td>35</td>
<td>-0.042</td>
<td>20.8</td>
<td>20.8143</td>
<td>-0.01428</td>
</tr>
<tr>
<td>36</td>
<td>-0.248</td>
<td>17.3</td>
<td>17.3836</td>
<td>-0.08355</td>
</tr>
<tr>
<td>37</td>
<td>0.184</td>
<td>23.8</td>
<td>23.7381</td>
<td>0.06195</td>
</tr>
<tr>
<td>38</td>
<td>0.02</td>
<td>22.3</td>
<td>22.2931</td>
<td>0.00689</td>
</tr>
<tr>
<td>39</td>
<td>-0.047</td>
<td>19.1</td>
<td>19.1159</td>
<td>-0.01586</td>
</tr>
<tr>
<td>40</td>
<td>-0.177</td>
<td>19.2</td>
<td>19.2595</td>
<td>-0.05953</td>
</tr>
<tr>
<td>41</td>
<td>-0.152</td>
<td>20.4</td>
<td>20.451</td>
<td>-0.051</td>
</tr>
<tr>
<td>42</td>
<td>-0.202</td>
<td>18</td>
<td>18.0681</td>
<td>-0.06806</td>
</tr>
<tr>
<td>43</td>
<td>-0.135</td>
<td>21.2</td>
<td>21.2453</td>
<td>-0.04531</td>
</tr>
<tr>
<td>44</td>
<td>-0.118</td>
<td>22</td>
<td>22.0396</td>
<td>-0.03963</td>
</tr>
<tr>
<td>45</td>
<td>-0.222</td>
<td>23.3</td>
<td>23.3748</td>
<td>-0.07477</td>
</tr>
<tr>
<td>46</td>
<td>0.024</td>
<td>21</td>
<td>20.9918</td>
<td>0.00817</td>
</tr>
<tr>
<td>47</td>
<td>-0.069</td>
<td>16.6</td>
<td>16.6231</td>
<td>-0.02311</td>
</tr>
<tr>
<td>48</td>
<td>-0.035</td>
<td>18.2</td>
<td>18.2117</td>
<td>-0.01174</td>
</tr>
<tr>
<td>49</td>
<td>-0.001</td>
<td>19.8</td>
<td>19.8004</td>
<td>-0.00037</td>
</tr>
<tr>
<td>50</td>
<td>0.132</td>
<td>18.4</td>
<td>18.3554</td>
<td>0.04458</td>
</tr>
<tr>
<td>51</td>
<td>-0.36</td>
<td>23</td>
<td>23.1213</td>
<td>-0.12129</td>
</tr>
<tr>
<td>52</td>
<td>-0.139</td>
<td>19.5</td>
<td>19.5469</td>
<td>-0.04689</td>
</tr>
<tr>
<td>53</td>
<td>0.09</td>
<td>16.4</td>
<td>16.3696</td>
<td>0.03036</td>
</tr>
<tr>
<td>54</td>
<td>0.011</td>
<td>18.9</td>
<td>18.8962</td>
<td>0.00375</td>
</tr>
<tr>
<td>55</td>
<td>-0.252</td>
<td>20.4</td>
<td>20.4849</td>
<td>-0.08487</td>
</tr>
<tr>
<td>56</td>
<td>0.028</td>
<td>19.7</td>
<td>19.6906</td>
<td>0.00944</td>
</tr>
<tr>
<td>57</td>
<td>-0.703</td>
<td>27</td>
<td>27.2365</td>
<td>-0.23653</td>
</tr>
<tr>
<td>58</td>
<td>0.178</td>
<td>19.1</td>
<td>19.0399</td>
<td>0.06007</td>
</tr>
<tr>
<td>59</td>
<td>-0.206</td>
<td>21.1</td>
<td>21.1694</td>
<td>-0.06938</td>
</tr>
<tr>
<td>60</td>
<td>-0.231</td>
<td>19.9</td>
<td>19.9779</td>
<td>-0.07792</td>
</tr>
<tr>
<td>61</td>
<td>0.312</td>
<td>17.7</td>
<td>17.595</td>
<td>0.10502</td>
</tr>
<tr>
<td>62</td>
<td>-0.478</td>
<td>22.2</td>
<td>22.3609</td>
<td>-0.16085</td>
</tr>
<tr>
<td>63</td>
<td>-0.724</td>
<td>24.5</td>
<td>24.7438</td>
<td>-0.24379</td>
</tr>
<tr>
<td>64</td>
<td>0.199</td>
<td>18.6</td>
<td>18.533</td>
<td>0.06703</td>
</tr>
<tr>
<td>65</td>
<td>-0.073</td>
<td>19.7</td>
<td>19.7244</td>
<td>-0.02444</td>
</tr>
<tr>
<td>66</td>
<td>0.462</td>
<td>17.1</td>
<td>16.9443</td>
<td>0.15566</td>
</tr>
<tr>
<td>67</td>
<td>0.191</td>
<td>18.2</td>
<td>18.1358</td>
<td>0.06419</td>
</tr>
<tr>
<td>68</td>
<td>-0.194</td>
<td>20.2</td>
<td>20.2653</td>
<td>-0.06527</td>
</tr>
<tr>
<td>69</td>
<td>0.358</td>
<td>18.4</td>
<td>18.2795</td>
<td>0.12051</td>
</tr>
<tr>
<td>70</td>
<td>0.341</td>
<td>17.6</td>
<td>17.4852</td>
<td>0.11483</td>
</tr>
<tr>
<td>71</td>
<td>0.621</td>
<td>16.9</td>
<td>16.6909</td>
<td>0.20914</td>
</tr>
<tr>
<td>72</td>
<td>-0.876</td>
<td>22.1</td>
<td>22.3947</td>
<td>-0.29473</td>
</tr>
</tbody>
</table>

ISSN 2086 - 5635
Berdasarkan table tersebut didapatkan nilai R sebesar 0.994. Hal ini menunjukkan bahwa terjadi hubungan yang sangat kuat antara berat badan (X1) dengan Tinggi badan (X2) terhadap Gizi.

Analisis Determinasi (R²)

Berdasarkan Tabel 2, didapatkan R² (R Square) sebesar 0.988 atau 98.8%. Hal ini menunjukkan bahwa prosentase sumbangan pengaruh variabel independent yaitu berat badan dan tinggi badan terhadap variabel dependen yaitu gizi sebesar 98.8%.

Uji Koefisien Regresi Secara Bersama-sama (Uji F)

Hasil dari output analisis regresi dapat diketahui nilai F pada table 4 berikut:

Tabel 4. Hasil Uji F

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Regression</td>
<td>895.929</td>
<td>2</td>
<td>447.965</td>
<td>3.953E3</td>
<td>.000a</td>
</tr>
<tr>
<td>Residual</td>
<td>10.992</td>
<td>97</td>
<td>.113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>906.921</td>
<td>99</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), X2, X1
b. Dependent Variable: Y

Untuk melakukan Uji F ada beberapa langkah yaitu:

1. **Hipotesis.**
 - Ho : Tidak ada pengaruh secara signifikan antara berat badan dan tinggi badan secara bersama-sama terhadap gizi.
 - Ha : Ada pengaruh secara signifikan antara berat badan dan tinggi badan secara bersama-sama terhadap gizi.

2. Menentukan F hitung.
 - Berdasarkan nilai F hitung adalah 3.953E3

3. Menentukan F table.
 - Dengan menggunakan tingkat keyakinan 95% atau Signifikasi 5% atau 0.05, dengan df = (2,97) hasil F table adalah 3.09

4. **Kriteria pengujian**
 - Ho diterima jika F hitung < F table
 - Ho ditolak jika F hitung > F table
 - Maka: nilai F hitung > F table (3.953E3 > 3.09)

5. **Kesimpulan**
 - Ho ditolak, artinya Ada pengaruh secara signifikan antara berat badan dan tinggi badan secara bersama-sama terhadap gizi.

Analisis Korelasi berganda (R).

Hasil dari analisis regresi dapat dilihat pada hasil output model Summary adalah sebagai berikut:

Tabel 3. Hasil Analisis Korelasi berganda (R) Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.994</td>
<td>0.988</td>
<td>0.988</td>
<td>0.03663</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), X2, X1
b. Dependent Variable: Y
Uji koefisien Regresi secara Parsial (Uji-T)

Pengujian koefisien regresi variable berat badan
Adapun langkah-langkah pengujian adalah sebagai berikut:

1. Menentukan Hipotesis
 Ho : Secara parsial tidak ada pengaruh signifikan berat badan terhadap gizi.
 Ha : Secara parsial ada pengaruh signifikan berat badan terhadap gizi.

2. Dari Tabel 2, t hitung diperoleh sebesar 85.181
3. T table
 Table distribusi t adalah dapat dilihat (uji 2 sisi) dengan df = 97, t table = 1.985

4. Kriteria Pengujian;
 Ho diterima jika -t < t table atau t hitung < -t table
 Ho ditolak jika t hitung < -t table atau t hitung > t table

5. Membandingkan t hitung dengan t table.
 Nilai t hitung > t table (85.181 > 1.985) maka tolak Ho, artinya secara parsial ada pengaruh signifikan tinggi badan terhadap gizi.

 Karena Nilai t hitung < -t table (-60.30 < -1.985) maka tolak Ho, artinya secara parsial ada pengaruh signifikan tinggi badan terhadap gizi.

V. KESIMPULAN

Dari hasil pengujian dengan menggunakan Software SPSS 16 yang telah dibahas pada bagian sebelumnya, dapat diambil beberapa kesimpulan adalah sebagai berikut:

1. Persamaan regresinya adalah sebagai berikut:
 \[Y = 40.246 + 0.397X_1 + (-0.253)X_2 \]

2. Analisis Korelasi berganda (R), dengan nilai R sebesar 0.994, hal ini menunjukkan bahwa terjadi hubungan yang sangat kuat antara berat badan (X1) dengan Tinggi badan (X2) terhadap Gizi.

3. Analisis Determinasi (R^2), dengan nilai R^2 (R Square) sebesar 0.988 atau 98.8%, hal ini menunjukkan bahwa prosentase sumbangan pengaruh variable independent yaitu berat badan dan tinggi badan terhadap variable dependen yaitu gizi sebesar 98.8%.

4. Uji Koefisien Regresi Secara Bersama-sama (Uji F), Ada pengaruh secara signifikan antara berat badan dan tinggi badan secara bersama-sama terhadap gizi

5. Uji koefisien Regresi secara Parsial (Uji T):
 a. Pengujian koefisien regresi variable berat badan, Karena Nilai t hitung > t table (85.181 > 1.985) tolak Ho, artinya secara parsial ada pengaruh signifikan berat badan terhadap gizi.
 b. Pengujian koefisien regresi variable Tinggi badan, Karena Nilai t hitung < -t table (-60.30 < -1.985) maka tolak Ho, artinya secara parsial ada pengaruh signifikan tinggi badan terhadap gizi.

VI. REFERENS

[8] http://repository.usu.ac.id