Comparative Removal of Chromium Cr(VI) from Wastewater by Sawdust and Activated Charcoal Derived from Acacia and Sheesham Wood

Shoaib Ahmad, Bilal Haider, Hafiz Bilal Ahmad, Amir Shafeeq

Abstract


This study investigates the removal of Chromium (VI) (Cr(VI)) ions from simulated wastewater using various adsorbents. The experiment employs unmodified sawdust (UMSD) and modified sawdust (MSD), along with activated charcoal (AC) derived from Acacia and Sheesham (Dalbergia Sissoo) wood. Batch experiments were conducted to assess the impact of several parameters including solution pH, adsorbent dosage (g/250 mL), contact time (minutes), and initial Cr(VI) concentration (ppm) on Cr(VI) adsorption at room temperature and pressure. SEM along with EDX as well as FTIR were used to analyze the adsorbent surface chemistry. The results revealed that AC exhibited the maximum Cr(VI) removal efficiency (90%) from the simulated wastewater due to its larger surface area as compared to UMSD (55%) and MSD (78%). Models of Freundlich and Langmuir isotherms were used to assess the adsorption process. Analysis of the model constants indicated that the Freundlich isotherm better described the experimental data for all adsorbents, as evidenced by the high correlation coefficient (R² = 0.99).


Keywords


Activated Charcoal, Adsorption Isotherms, Modified Sawdust, Unmodified Sawdust

Full Text:

PDF

References


Achak, M., Hafidi, A., Ouazzani, N., Sayadi, S., & Mandi, L. (2009). Low cost biosorbent “banana peel” for the removal of phenolic compounds from olive mill wastewater: Kinetic and equilibrium studies. Journal of Hazardous Materials, 166(1), 117–125. https://doi.org/10.1016/J.JHAZMAT.2008.11.036

Ahmad, F., Fouad, E., & Ahmad, N. (2014). Removal of lead from wastewater by adsorption Using Saudi Arabian Clay. In International Journal of Chemical and Environmental Engineering (Vol. 5, Issue 2).

Ajmani, A., Shahnaz, T., Subbiah, S., & Narayanasamy, S. (2019). Hexavalent chromium adsorption on virgin, biochar, and chemically modified carbons prepared from Phanera vahlii fruit biomass: equilibrium, kinetics, and thermodynamics approach. Environmental Science and Pollution Research, 26(31), 32137–32150. https://doi.org/10.1007/s11356-019- 06335-z

Al-Asheh, S., Banat, F., Al-Omari, R., & Duvnjak, Z. (2000). Predictions of binary sorption isotherms for the sorption of heavy metals by pine bark using single isotherm data. Chemosphere, 41(5), 659–665. https://doi.org/10.1016/S0045-6535(99)00497-X

Alatabe, M. J. A., & Hussein, A. A. (2021). Review Paper. Utilization of Low-Cost Adsorbents for the Adsorption Process of Chromium ions. IOP Conference Series: Materials Science and Engineering, 1076(1), 012095. https://doi.org/10.1088/1757-899X/1076/1/012095

Al-Ghouti, M. A., & Da’ana, D. A. (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of Hazardous Materials, 393, 122383. https://doi.org/10.1016/J.JHAZMAT.2020.122383

Ali, A. H., Attia, H. G., & Muhaisan, F. F. (2014). Modification Of The Granular Activated Carbon And Its Effect On Removal Of Cr(VI) From Aqueous Solution In Batch And Fixed- Bed Systems. Journal of Engineering and Sustainable Development, 18(1), 78–94. https://jeasd.uomustansiriyah.edu.iq/index.php/jeasd/article/view/851

Avola, T., Campisi, S., Polito, L., Arici, S., Ferruti, L., & Gervasini, A. (2023a). Addressing the issue of surface mechanisms and competitive effects in Cr(VI) reductive-adsorption on tin- hydroxyapatite in the presence of co-ions. Scientific Reports 2023 13:1, 13(1), 1–14. https://doi.org/10.1038/s41598-023-44852-7

Avola, T., Campisi, S., Polito, L., Arici, S., Ferruti, L., & Gervasini, A. (2023b). Addressing the issue of surface mechanisms and competitive effects in Cr(VI) reductive-adsorption on tin- hydroxyapatite in the presence of co-ions. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-44852-7

Avola, T., Campisi, S., Polito, L., Arici, S., Ferruti, L., & Gervasini, A. (2023c). Addressing the issue of surface mechanisms and competitive effects in Cr(VI) reductive-adsorption on tin- hydroxyapatite in the presence of co-ions. Scientific Reports 2023 13:1, 13(1), 1–14. https://doi.org/10.1038/s41598-023-44852-7

Ayawei, N., Ebelegi, A. N., & Wankasi, D. (2017). Modelling and Interpretation of Adsorption Isotherms. Journal of Chemistry, 2017. https://doi.org/10.1155/2017/3039817

Barkat, M., Nibou, D., Chegrouche, S., & Mellah, A. (2009). Kinetics and thermodynamics studies of chromium(VI) ions adsorption onto activated carbon from aqueous solutions. Chemical Engineering and Processing: Process Intensification, 48(1), 38–47. https://doi.org/10.1016/J.CEP.2007.10.004

Boparai, H. K., Joseph, M., & O’Carroll, D. M. (2011). Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. Journal of Hazardous Materials, 186(1), 458–465. https://doi.org/10.1016/J.JHAZMAT.2010.11.029

Burant, A., Selbig, W., Furlong, E. T., & Higgins, C. P. (2018a). Trace organic contaminants in urban runoff: Associations with urban land-use. Environmental Pollution (Barking, Essex : 1987), 242(Pt B), 2068–2077. https://doi.org/10.1016/J.ENVPOL.2018.06.066

Burant, A., Selbig, W., Furlong, E. T., & Higgins, C. P. (2018b). Trace organic contaminants in urban runoff: Associations with urban land-use. Environmental Pollution, 242, 2068–2077. https://doi.org/10.1016/J.ENVPOL.2018.06.066

Cao, X., Zhou, X., Hao, M., & Mei, X. (2021). Removal of Cr(VI) from aqueous solutions using montmorillonite-biochar composites. Desalination and Water Treatment, 215, 98–107. https://doi.org/10.5004/dwt.2021.26759

Chaiwon, T., Jannoey, P., & Channei, D. (2017a). Preparation of activated carbon from sugarcane bagasse waste for the adsorption equilibrium and kinetics of basic dye. Key Engineering Materials, 751 KEM, 671–676. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/KEM.751.671

Chaiwon, T., Jannoey, P., & Channei, D. (2017b). Preparation of activated carbon from sugarcane bagasse waste for the adsorption equilibrium and kinetics of basic dye. Key Engineering Materials, 751 KEM, 671–676. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/KEM.751.671

Chandio, T. A., Khan, M. N., Muhammad, M. T., Yalcinkaya, O., Turan, E., & Kayis, A. F. (2021). Health risk assessment of chromium contamination in the nearby population of mining plants, situated at Balochistan, Pakistan. Environmental Science and Pollution Research, 28(13), 16458–16469. https://doi.org/10.1007/S11356-020-11649-4/TABLES/6

Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology, 97(9), 1061–1085. https://doi.org/10.1016/J.BIORTECH.2005.05.001

Farhan, A. M., Al-Dujaili, A. H., & Awwad, A. M. (2013). Equilibrium and kinetic studies of cadmium(II) and lead(II) ions biosorption onto Ficus carcia leaves. International Journal of Industrial Chemistry, 4(1). https://doi.org/10.1186/2228-5547-4-24

Farooq, U., Kozinski, J. A., Khan, M. A., & Athar, M. (2010). Biosorption of heavy metal ions using wheat based biosorbents – A review of the recent literature. Bioresource Technology, 101(14), 5043–5053. https://doi.org/10.1016/J.BIORTECH.2010.02.030

Febrianto, J., Kosasih, A. N., Sunarso, J., Ju, Y. H., Indraswati, N., & Ismadji, S. (2009).

Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies. Journal of Hazardous Materials, 162(2–3), 616–645. https://doi.org/10.1016/J.JHAZMAT.2008.06.042

Hafiz Bilal Ahmad. (2020). Comparative Study of Cr (VI) Adsorption from Synthetic Wastewater Using Chemically Modified Mixed Sawdust and Activated Charcoal of Acacia and Sheesham Wood. University of the Punjab, Lahore Pakistan.

Hashem, M. A., Payel, S., Mim, S., Hasan, M. A., Nur-A-Tomal, M. S., Rahman, M. A., & Sarker, M. I. (2022). Chromium adsorption on surface activated biochar made from tannery liming sludge: A waste-to-wealth approach. Water Science and Engineering, 15(4), 328– 336. https://doi.org/10.1016/J.WSE.2022.09.001

Kim, C., Zhou, Q., Deng, B., Thornton, E. C., & Xu, H. (2001). Chromium(VI) reduction by hydrogen sulfide in aqueous media: Stoichiometry and kinetics. Environmental Science and Technology, 35(11), 2219–2225. https://doi.org/10.1021/ES0017007

Liu, Y., Liang, Y., Cui, W., Zhai, H., & Ji, M. (2024). Efficient Removal of Cr(VI) from Wastewater by Magnetic Biochar Derived from Peanut Hull. Water, Air, and Soil Pollution, 235(2), 1–12. https://doi.org/10.1007/S11270-024-06912-0/TABLES/4

Miao, S., Guo, J., Deng, Z., Yu, J., & Dai, Y. (2022). Adsorption and reduction of Cr(VI) in water by iron-based metal-organic frameworks (Fe-MOFs) composite electrospun nanofibrous membranes. Journal of Cleaner Production, 370, 133566. https://doi.org/10.1016/J.JCLEPRO.2022.133566

Mohan, D., Rajput, S., Singh, V. K., Steele, P. H., & Pittman, C. U. (2011). Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent. Journal of Hazardous Materials, 188(1–3), 319–333. https://doi.org/10.1016/J.JHAZMAT.2011.01.127

Mukherjee, S., Kumar, S., Misra, A. K., & Fan, M. (2007a). Removal of phenols from water environment by activated carbon, bagasse ash and wood charcoal. Chemical Engineering Journal, 129(1–3), 133–142. https://doi.org/10.1016/J.CEJ.2006.10.030

Mukherjee, S., Kumar, S., Misra, A. K., & Fan, M. (2007b). Removal of phenols from water environment by activated carbon, bagasse ash and wood charcoal. Chemical Engineering Journal, 129(1–3), 133–142. https://doi.org/10.1016/J.CEJ.2006.10.030

Neolaka, Y. A. B., Lawa, Y., Naat, J. N., Riwu, A. A. P., Iqbal, M., Darmokoesoemo, H., & Kusuma, H. S. (2020). The adsorption of Cr(VI) from water samples using graphene oxide- magnetic (GO-Fe3O4) synthesized from natural cellulose-based graphite (kusambi wood or Schleichera oleosa): Study of kinetics, isotherms and thermodynamics. Journal of Materials Research and Technology, 9(3), 6544–6556. https://doi.org/10.1016/J.JMRT.2020.04.040

Patel, H. (2018). Charcoal as an adsorbent for textile wastewater treatment. Separation Science and Technology (Philadelphia), 53(17), 2797–2812. https://doi.org/10.1080/01496395.2018.1473880

Prasankumar, T., Salpekar, D., Bhattacharyya, S., Manoharan, K., Yadav, R. M., Campos Mata, M. A., Miller, K. A., Vajtai, R., Jose, S., Roy, S., & Ajayan, P. M. (2022). Biomass derived hierarchical porous carbon for supercapacitor application and dilute stream CO2 capture. Carbon, 199, 249–257. https://doi.org/10.1016/J.CARBON.2022.07.057

Sinha, R., Kumar, R., Abhishek, K., Shang, J., Bhattacharya, S., Sengupta, S., Kumar, N., Singh, R. K., Mallick, J., Kar, M., & Sharma, P. (2022). Single-step synthesis of activated magnetic biochar derived from rice husk for hexavalent chromium adsorption: Equilibrium mechanism, kinetics, and thermodynamics analysis. Groundwater for Sustainable Development, 18, 100796. https://doi.org/10.1016/J.GSD.2022.100796

Stasinakis, A. S., Thomaidis, N. S., Mamais, D., Karivali, M., & Lekkas, T. D. (2003).

Chromium species behaviour in the activated sludge process. Chemosphere, 52(6), 1059– 1067. https://doi.org/10.1016/S0045-6535(03)00309-6

Üner, O., Geçgel, Ü., & Bayrak, Y. (2019). Preparation and characterization of mesoporous activated carbons from waste watermelon rind by using the chemical activation method with zinc chloride. Arabian Journal of Chemistry, 12(8), 3621–3627. https://doi.org/10.1016/J.ARABJC.2015.12.004

Vo, A. T., Nguyen, V. P., Ouakouak, A., Nieva, A., Doma, B. T., Tran, H. N., & Chao, H. P. (2019). Efficient Removal of Cr(VI) from Water by Biochar and Activated Carbon Prepared through Hydrothermal Carbonization and Pyrolysis: Adsorption-Coupled Reduction Mechanism. Water 2019, Vol. 11, Page 1164, 11(6), 1164. https://doi.org/10.3390/W11061164

Wan Ngah, W. S., & Hanafiah, M. A. K. M. (2008). Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review. Bioresource Technology, 99(10), 3935–3948. https://doi.org/10.1016/J.BIORTECH.2007.06.011

Waseem, A., Arshad, J., Iqbal, F., Sajjad, A., Mehmood, Z., & Murtaza, G. (2014). Pollution Status of Pakistan: A Retrospective Review on Heavy Metal Contamination of Water, Soil, and Vegetables. BioMed Research International, 2014. https://doi.org/10.1155/2014/813206

Yang, L., & Chen, J. P. (2008). Biosorption of hexavalent chromium onto raw and chemically modified Sargassum sp. Bioresource Technology, 99(2), 297–307. https://doi.org/10.1016/J.BIORTECH.2006.12.021

Yusuff, A. S., Popoola, L. T., & Igbafe, A. I. (2022). Response surface modeling and optimization of hexavalent chromium adsorption onto eucalyptus tree bark-derived pristine and chemically-modified biochar. Chemical Engineering Research and Design, 182, 592– 603. https://doi.org/10.1016/J.CHERD.2022.04.007

Zhao, J., & Xia, L. (2010). Bioconversion of corn stover hydrolysate to ethanol by a recombinant yeast strain. Fuel Processing Technology, 91(12), 1807–1811. https://doi.org/10.1016/J.FUPROC.2010.08.002




DOI: https://doi.org/10.29103/cejs.v4i6.19191

Article Metrics

 Abstract Views : 8 times
 PDF Downloaded : 5 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Shoaib Ahmad, Bilal Haider, Hafiz Bilal Ahmad, Amir Shafeeq

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Chemical Engineering Journal Storage (CEJS) , Jalan Batam No 02 Universitas Malikussaleh Kampus Bukit Indah. lumbung138

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Stat Counter

Flag Counter

 

View MyStat View MyStat