ANALISA GANGGUAN HUBUNG SINGKAT SATU FASA KE TANAH PADA JARINGAN DISTRIBUSI 20 KV PT. PLN (PERSERO) TAKENGON MENGGUNAKAN SOFTWARE ETAP POWER STATION 12.6.0

Muhammad S.T.M.Sc¹ Ezwarsyah,S.T.M.T²Reza Fahlevi Nasrah³, Fakultas Teknik Universitas Malikussaleh e-mail: Zreza486@gmail.com

ABSTRAK

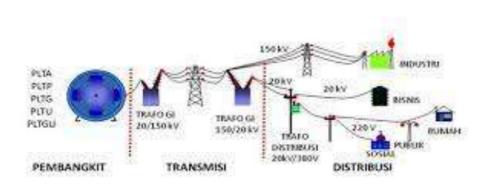
Sistem distribusi tegangan menengah 20 kV merupakan alat tanam bagi konsumen. Namun pada kenyataannya sistem distribusi sering mengalami gangguan antara yang paling umum adalah hubung singkat satu fase ke ground. Oleh karena itu, analisis hubungan arus pendek diperlukan untuk mengetahui pengaturan sistem proteksi yang andal untuk melokalisasi gangguan tersebut. Sistem proteksi peralatan yang digunakan untuk sistem distribusi tenaga medium lebih banyak relay arus dan relay circuit ground, fungsi relay PMT diinstruksikan untuk membuka acara gangguan, sehingga jaringan yang terkena dapat dipisahkan dari jaringan. Pada tugas akhir ini akan dibahas tentang analisis hubung singkat fase tunggal ke ground yang kemudian digunakan untuk penentuan setting proteksi proteksi pada sistem distribusi tenaga sekunder PT.PLN (persero) Rayon Takengon.. Analisis Hubung singkat adalah analisis yang mempelajari kontribusi arus gangguan hubung singkat yang mungkin mengalis pada setiap cabang didalam sistem sewaktu gangguan hubung singkat yang mungkin terjadi di dalam sistem tenaga listrik. Hubung singkat terjadi akibat dari faktor internal dan faktor eksternal. Pada penelitian ini akan dilakukan analisa arus hubung singkat pada sistem Distribusi 20 KV pada PT. PLN (Persero) Rayon Takengon, khususnya pada Koorda Angkup.

Kata kunci: Sistem Distribusi 20 kV, Hubung Singkat, ETAP, relay

PENDAHULUAN

Jaringan Tegangan Menengah merupakan bagian dari sistem distribusi yang berhubungan langsung ke pelanggan. Pada operasi sistem tenaga listrik dapat terjadi gangguan yang mengakibatkan terganggunya penyaluran tenaga listrik ke konsumen. Suatu gangguan di dalam peralatan listrik didefinisikan sebagai terjadinya suatu kerusakan didalam jaringan listrik yang menyebabkan aliran arus listrik keluar dari saluran yang seharusnya.

Hubung singkat merupakan suatu hubungan abnormal pada impedansi yang relatif rendah terjadi secara kebetulan atau disengaja antara dua titik yang mempunyai potensial yang berbeda. Untuk mengatasi gangguan tersebut, perlu dilakukan analisis hubung singkat sehingga sistem proteksi yang tepat pada Sistem Tenaga Listrik dapat ditentukan.


Analisis Hubung singkat adalah analisis yang mempelajari kontribusi arus gangguan hubung singkat yang mungkin mengalis pada setiap cabang didalam sistem sewaktu gangguan hubung singkat yang mungkin terjadi di dalam sistem tenaga listrik. Hubung singkat terjadi akibat dari faktor internal dan faktor eksternal.

penelitian ini bertujuan menentukan arus hubung singkat gangguan satu fasa ke tanah dan tingkat tegangan pada busbar selama gangguan pada PT. PLN Rayon Takengon Penyulang Koorda Angkup agar dapat menjadi bahan pertimbangan bagi PT. PLN Rayon Takengon dalam memperbaiki Sistem Proteksi ketenagalistrikan di wilayahnya.

PEMBAHASAN

Sistem Distribusi

Sistem distribusi merupakan bagian dari sistem tenaga listrik secara keseluruhan, sistem distribusi ini berguna untuk menyalurkan tenaga listrik dari sumber daya besar (*Bulk Power Source*) sampai ke konsumen.

Gambar 1. Skema Sistem Distribusi Listrik

Gambar diatas menunjukkan sistem distribusi listrik mulai dari Pembangkit, Transmisis Distribusi dan Beban yang saling berhubungan dan berkerja sama untuk melayani kebutuhan tenaga listrik bagi pelanggan sesuai kebutuhan.

Gangguan Dalam Sistem Distribusi

Setiap kesalahan dalam suatu rangkaian yang menyebabkan terganggunya aliran arus yang normal disebut gangguan. Gangguan pada sistem ketenaga-listrikan sudah menjadi bagian dari pengoperasian sistem tenaga listrik tersebut. Mulai dari sumber alam, pembangkit, transmisi, distribusi hingga pusat-pusat beban tidak pernah lepas dari berbagai macam gangguan.

Klasifikasi Gangguan

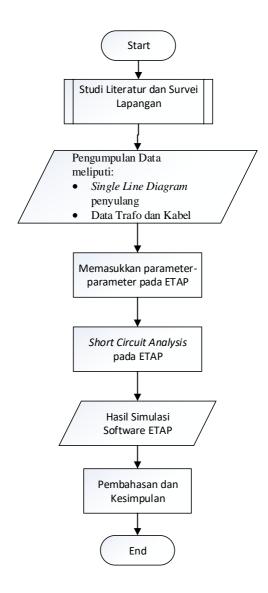
Gangguan Tiga Fasa Seimbang

Tipe gangguan ini didefinisikan sebagai gangguan hubung singkat tiga fasa, dimana gangguan itu jarang terjadi, tetapi merupakan tipe gangguan yang palih parah karena pada setiap saluran arus gangguan sama besarnya.

Gangguan Hubung Singkat Satu Fasa Ke Tanah

Jenis gangguan yang biasanya terdapat dalam praktek ialah gangguan satu fasa ke tanah dan yang terbanyak terjadi. Pada gangguan satu fasa ke tanah biasanya terdapat tahanan hubung singkatnya

Gangguan Hubung Singkat Fasa Ke Fasa


Dengan menganggap mula – mula generator tanpa beban, untuk melihat kondisi batas pada titik gangguan.

Teori Hubung Singkat Sistem Distribusi 20 KV.

Hubung singkat adalah terjadinya hubungan penghantar bertegangan atau penghantar tidak bertegangan secara langsung tidak melalui media (resistor/beban) yang semestinya sehingga terjadi aliran arus yang tidak normal (sangat besar).

METODE

Penelitian ini dilakukan di PT. PLN (Persero) Rayon Takengon, Penyulang Koorda GY Angkup, Provinsi Aceh. Adapun langkah-langkah dalam penyelesaian penelitian memiliki proses yang dilakukan untuk menyelesaikan penelitian ini seperti yang terdapat pada Gambar 3.1 berikut :

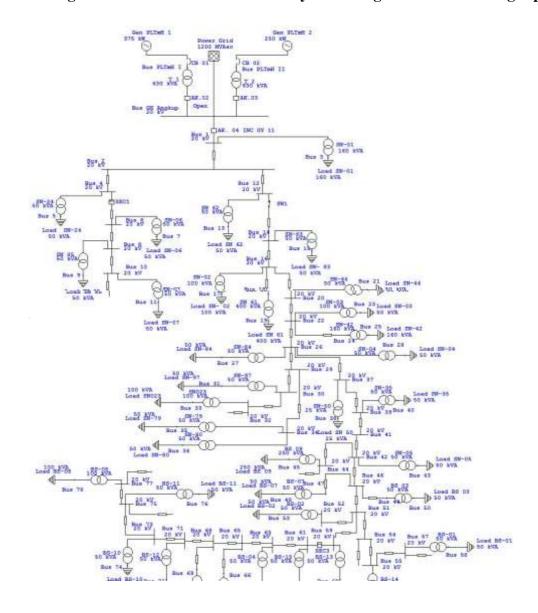
Gambar 3.1 Langkah-langkah Penelitian

Data Penelitian

Adapun jenis Data Penelitian yang digunakan untuk mendukung penelitian ini adalah:

a. Data Primer

Merupakan data yang diperoleh dari lapangan dengan berwawancara, observasi, yang bersumber dari PT. PLN berupa data-data yang belum diolah.


b. Data Sekunder

Data sekunder merupakan data yang diperoleh dari studi kepustakaan, data tersebut berupa buku cetak, *ebook*, jurnal, paper, data *sheet* dan lainnya yang berhubungan dengan penelitian.

HASIL

Pada analisis penelitian skripsi ini, akan disimulasikan besar arus gangguan hubung singkat satu phase ke tanah dengan bantuan software ETAP 12.6.0. Simulasi besar arus gangguan hubung singkat ini merupakan pada sistem jaringan 20 KV Rayon Takengon dengan Koorda GY Angkup.

Sistem Jaringan Distribusi 20 KV PT. PLN Rayon Takengon Koorda GY Angkup

Pada sistem jaringan distribusi 20 KV PT. PLN Rayon Takengon Koorda GY Angkup terdapat 2 Pembangkit Distribusi yaitu PLTmH I dan PLTmH II yang terhubung langsung ke jaringan Distribusi 20 KV.

Tabel 4.1 Hasil simulasi aliran daya ETAP 12.6

N.T.	Dari Bus	Ke	Aliran D	aya		0/ DE
No.		Bus	MW	Mvar	Amp	% PF
1	Bus GH Angkup	Bus 1	2,818	0,251	81,7	99,6
2	Due 1	Bus 2	2,662	0,246	77,2	99,6
2	Bus 1	Bus 3	0,156	0,005	4,5	99,9
3	Dug 2	Bus 4	0,187	0,006	5,5	100,0
3	Bus 2	Bus 12	2,420	0,158	71,7	99,8
4	Bus 4	Bus 6	0,140	0,004	4,1	100,0
4	Dus 4	Bus 5	0,047	0,002	1,4	99,9
5	Bus 6	Bus 8	0,093	0,003	2,8	100,0
3	Dus o	Bus 7	0,047	0,002	1,4	99,9
6	Due 9	Bus 10	0,047	0,001	1,4	100,0
O	Bus 8	Bus 9	0,047	0,002	1,4	99,9
7	Bus 10	Bus 11	0,047	0,002	1,4	99,9
8	Bus 12	Bus 14	2,367	0,147	70,3	99,8
0	Dus 12	Bus 13	0,046	0,002	1,4	99,9
9	Bus 14	Bus 16	2,320	0,145	68,9	99,8
9	Dus 14	Bus 15	0,046	0,002	1,4	99,9
	Bus 16	Bus 18	0,371	0,012	11,0	99,9
10		Bus 20	1,857	0,129	55,2	99,8
		Bus 17	0,093	0,003	2,7	99,9
11	Bus 18	Bus 19	0,371	0,012	11,0	99,9
12	Bus 20	Bus 22	1,808	0,124	53,8	99,8
12	Dus 20	Bus 21	0,046	0,002	1,4	99,9
		Bus 26	1,613	0,116	48,0	99,7
13	Bus 22	Bus 24	0,148	0,005	4,4	99,9
		Bus 23	0,047	0,001	1,4	100,0
14	Bus 24	Bus 25	0,148	0,005	4,4	99,9
		Bus 29	0,230	0,007	6,9	99,9
15	Bus 26	Bus 37	1,289	0,104	38,4	99,7
13	Dus 20	Bus 28	0,046	0,001	1,4	99,9
		Bus 27	0,046	0,001	1,4	99,9
16	Bus 29	Bus 34	0,092	0,003	2,7	99,9
10	Dus 27	Bus 30	0,138	0,004	4,1	99,9
17	Bus 30	Bus 32	0,092	0,003	2,7	99,9
1/		Bus 31	0,046	0,001	1,4	99,9
18	Bus 32	Bus 33	0,092	0,003	2,7	99,9
19	Bus 34	Bus 35	0,046	0,001	1,4	99,9
1)	240 0 1	Bus 36	0,046	0,001	1,4	99,9
20	Bus 37	Bus 39	1,265	0,103	37,8	99,7
21		Bus 38	0,023	0,001	0,7	99,9

22	Bus 39	Bus 41	1,219	0,101	36,4	99,7
22	Dus 37	Bus 40	0,046	0,001	1,4	99,9
23	Bus 41	Bus 42	1,219	0,101	36,4	99,7
		Bus 44	0,229	0,007	6,8	99,9
24	Bus 42	Bus 46	0,942	0,089	28,2	99,6
		Bus 43	0,046	0,001	1,4	99,9
25	Bus 44	Bus 45	0,229	0,007	6,8	99,9
		Bus 47	0,046	0,001	1,4	99,9
26	Bus 46	Bus 51	0,850	0,085	25,5	99,5
		Bus 49	0,046	0,001	1,4	100,0
27	Bus 47	Bus 48	0,046	0,001	1,4	99,9
28	Bus 49	Bus 50	0,046	0,001	1,4	99,9
		Bus 54	0,348	0,069	10,6	98,1
29	Bus 51	Bus 59	0,456	0,014	13,6	100,0
		Bus 52	0,046	0,001	1,4	100,0
30	Bus 52	Bus 53	0,046	0,001	1,4	99,9
31	Bus 54	Bus 55	0,347	0,070	10,6	98,0
22	Bus 55	Bus 57	0,046	0,001	1,4	100,0
32		Bus 56	0,302	0,068	9,2	97,5
33	Bus 57	Bus 58	0,046	0,001	1,4	99,9
34	Bus 59	Bus 60	0,046	0,001	1,4	99,9
34		Bus 61	0,410	0,012	12,3	100,0
35	Bus 61	Bus 63	0,365	0,011	10,9	100,0
33		Bus 62	0,046	0,001	1,4	99,9
36	Duc 62	Bus 65	0,319	0,009	9,5	100,0
30	Bus 63	Bus 64	0,046	0,001	1,4	99,9
37	Bus 65	Bus 66	0,046	0,001	1,4	100,0
31	Dus 05	Bus 68	0,273	0,008	8,2	100,0
38	Bus 66	Bus 67	0,046	0,001	1,4	99,9
39	Duc 60	Bus 69	0,046	0,001	1,4	100,0
39	Bus 68	Bus 71	0,228	0,007	6,8	100,0
40	Bus 69	Bus 70	0,046	0,001	1,4	99,9
41	Rue 71	Bus 73	0,182	0,005	5,4	100,0
41	Bus 71	Bus 72	0,046	0,001	1,4	99,9
42	Rue 73	Bus 75	0,137	0,004	4,1	100,0
44	Bus 73	Bus 74	0,046	0,001	1,4	99,9
43	Rue 75	Bus 77	0,091	0,003	2,7	100,0
43	Bus 75	Bus 76	0,046	0,001	1,4	99,9
44	Bus 77	Bus 78	0,091	0,003	2,7	99,9

Pada Tabel 4.1 di atas merupakan Hasil Running Simulasi Aliran Daya (*Load Flow*) menggunakan Aplikasi ETAP 12.6. dari Hasil tersebut dapat diketahui besaran nilai daya listrik yang berubah seiring dengan Jarak yang dilalui.

1.1 Simulasi Hubung Singkat dengan ETAP 12.6

Simulasi hubung singkat dilakukan saat semua beban pada Penyulang GY Angkup beroperasi. Dalam simulasi ini ada beberapa bus yang terjadi hubung singkat satu fasa ke tanah dan menghasilkan beberapa arus hubung singkat (kA) pada bus Sisi Primer Transformator 20 KV dan Sisi Sekunder Transformator 0,38 KV

1.1.1 Simulasi Hubung Singkat pada Sisi 20 KV

Simulasi ini dilakukan pada Bus Sisi Primer Transformator dengan Tegangan 20 KV pada keadaan Pembebanan Normal. Adapun hasilnya seperti pada Tabel 4.2 berikut. Tabel 4.2 Hasil Simulasi Hubung Singkat Satu Fasa Ke Tanah Sisi Primer Transformator

No.	Dari Bus	KV	Va	Vb	Vc	Ia (kA)	Sequence Current (kA) Ia=Ib=Ic
1	Bus GH Angkup	20	-	173,0 2	173,0 2	0,07 6	0,025
2	Bus 1	20	-	173,0 2	173,0 2	0,07 6	0,025
3	Bus 2	20	-	170,0 2	170,6 4	0,07	0,024
4	Bus 4	20	-	170,0 0	170,6 3	0,07	0,024
5	Bus 6	20	-	169,7 6	170,4 3	0,07	0,024
6	Bus 8	20	-	169,6 1	170,3 1	0,07	0,024
7	Bus 10	20	-	169,4 9	170,2 1	0,07	0,024
8	Bus 12	20	-	169,6 5	170,3 4	0,07	0,024
9	Bus 14	20	-	169,6 3	170,3 3	0,07	0,024
10	Bus 16	20	-	169,6 0	170,3 0	0,07	0,024
11	Bus 20	20	-	169,3 5	170,1 0	0,07	0,024
12	Bus 22	20	-	169,2 4	170,0 0	0,07 0	0,023
13	Bus 26	20	-	169,1 1	169,9 0	0,07	0,023
14	Bus 29	20	-	169,0 3	169,8 0	0,07 0	0,023

15	Bus 30	20	-	169,0 1	169,7 8	0,07	0,023
16	Bus 32	20	-	169,0 0	179,7 6	0,07	0,023
17	Bus 34	20	-	168,9 9	169,7 5	0,07	0,023
18	Bus 37	20	-	169,0 0	169,8 0	0,07 0	0,023
19	Bus 39	20	-	168,9 9	169,7 9	0,07 0	0,023
20	Bus 41	20	-	168,9 7	169,7 8	0,07 0	0,023
21	Bus 42	20	-	168,4 8	169,3 7	0,06 9	0,023
22	Bus 44	20	-	168,4 6	169,3 4	0,06 9	0,023
23	Bus 46	20	-	168,2 3	169,1 6	0,06 9	0,023
24	Bus 51	20	-	168,0 0	168,9 6	0,06 9	0,023
25	Bus 52	20	-	167,8 7	168,7 9	0,06 8	0,023
26	Bus 54	20	-	167,7 2	168,7 2	0,06 8	0,023
27	Bus 55	20	-	167,6 9	168,6 9	0,06 8	0,023
28	Bus 57	20	-	167,6 7	168,6 6	0,06 8	0,023
29	Bus 59	20	-	167,8 9	168,8 2	0,06 8	0,023
30	Bus 61	20	-	167,8 9	168,8 2	0,06 8	0,023
31	Bus 63	20	-	167,7 7	168,6 7	0,06 8	0,023
32	Bus 65	20	-	167,7 6	168,6 5	0,06 8	0,023
33	Bus 68	20	-	167,4 5	168,2 6	0,06 8	0,023
34	Bus 71	20	-	167,3 6	168,1 5	0,06 8	0,023
35	Bus 73	20	-	167,1	167,8	0,06	0,022

				3	6	7	
36	Bus 75	20		166,9	167,6	0,06	0,022
30	30 Dus /3	20	_	4	0	7	0,022
37	Bus 77	20		166,8	167,4	0,06	0,022
3/ 1	Dus //	20 -	-	0	3	7	0,022

Dari Hasil Simulasi pada Tabel 4.2 di atas dapat dilihat nilai Arus Gangguan Hubung Singkat Satu fasa ke tanah kA dengan asumsi gangguan terjadi pada Fasa a, sehingga Va=0.

Adapun Nilai Arus Gangguan terbesar yaitu pada Bus GH Angkup dan Bus 1 dengan masing-masing nilai Arus Ia=0,076 kA dan Nilai terkecil yaitu pada Bus 75 dan 77 dengan masing-masing nilai Arus Ia=0,067 kA.

Terjadinya perbedaan Arus Gangguan pada kedua Bus tersebut disebabkan oleh Jarak Bus dari Sistem pembangkitan, sehingga Arus Gangguan Kecil. Adapun jarak Bus 1 lebih dekat dengan Pembangkit dan Bus 75 dan 77 mempunyai Jarak yang sangat jauh dari pembangkit dan berada diujung penyulang Koorda GY Angkup

1.1.2 Simulasi Hubung Singkat pada Sisi Beban

Simulasi ini dilakukan pada Bus Sisi Sekunder Transformator dengan Tegangan 0,38 KV pada keadaan Pembebanan Normal. Adapun hasilnya seperti pada Tabel 4.3 berikut Tabel 4.3 Hasil Simulasi Hubung Singkat Satu Fasa Ke Tanah Sisi Beban

No.	Dari Bus	KV	Va	Vb	Vc	Ia (kA)	Sequence Current (kA)
						,	Ia=Ib=Ic
1	Bus 3	0,38	-	99,54	99,08	6,646	2,215
2	Bus 5	0,38	-	99,56	99,42	2,092	0,697
3	Bus 7	0,38	-	99,53	99,40	2,090	0,697
4	Bus 9	0,38	-	99,52	99,38	2,089	0,696
5	Bus 11	0,38	-	99,50	99,37	2,088	0,696
6	Bus 13	0,38	-	99,52	99,38	2,089	0,696
7	Bus 15	0,38	-	99,52	99,38	2,089	0,696
8	Bus 17	0,38	-	99,06	98,80	4,086	1,362
9	Bus 19	0,38	-	96,77	95,86	14,410	4,803
10	Bus 21	0,38	-	99,49	99,35	2,086	0,695
11	Bus 23	0,38	-	98,99	98,73	4,074	1,358
12	Bus 25	0,38	-	98,43	98,02	6,338	2,113
13	Bus 27	0,38	-	99,46	99,33	2,084	0,695
14	Bus 28	0,38	-	99,46	99,33	2,084	0,695
15	Bus 31	0,38	-	99,46	99,31	2,083	0,694
16	Bus 33	0,38	-	98,95	98,67	4,065	1,355
17	Bus 35	0,38	-	99,46	99,31	2,083	0,694

18	Bus 36	0,38	-	99,46	99,31	2,083	0,694
19	Bus 38	0,38	-	99,72	99,65	1,055	0,352
20	Bus 40	0,38	-	99,45	99,32	2,083	0,694
21	Bus 43	0,38	-	99,39	99,26	2,078	0,693
22	Bus 45	0,38	-	97,35	96,80	9,371	3,124
23	Bus 48	0,38	-	99,37	99,23	2,076	0,692
24	Bus 50	0,38	-	99,35	99,19	2,073	0,691
25	Bus 53	0,38	-	99,33	99,19	2,072	0,691
26	Bus 56	0,38	-	99,31	99,18	2,071	0,690
27	Bus 58	0,38	-	99,31	99,17	2,071	0,690
28	Bus 60	0,38	-	99,33	99,19	2,073	0,691
29	Bus 62	0,38	-	99,33	99,19	2,073	0,691
30	Bus 64	0,38	-	99,33	99,17	2,071	0,690
31	Bus 67	0,38	-	99,31	99,10	2,067	0,689
32	Bus 70	0,38	-	99,31	99,08	2,067	0,689
33	Bus 72	0,38	-	99,31	99,08	2,067	0,689
34	Bus 74	0,38	-	99,30	99,04	2,064	0,688
35	Bus 76	0,38	-	99,28	98,99	2,062	0,687
36	Bus 78	0,38	-	98,62	98,03	3,979	1,326

Dari Hasil Simulasi pada Tabel 4.3 di atas dapat dilihat nilai Arus Gangguan Hubung Singkat Satu fasa ke tanah kA dengan asumsi gangguan terjadi pada Fasa a, sehingga Va=0.

Adapun Nilai Arus Gangguan terbesar yaitu pada Bus 19 dengan nilai Arus Ia=14,410 kA dan Nilai terkecil yaitu pada Bus 38 dengan nilai Arus Ia=1,055 kA.

Terjadinya perbedaan Arus Gangguan pada kedua Bus tersebut disebabkan oleh Besarnya beban yang terpasang pada Bus terminal, yang mana beban yang terpasang pada Bus 19 sebesar 400 KVA dengan Pengoperasian Normal dan Jauh dari Sistem pembangkitan, sehingga Arus Gangguan sangat besar. Adapun bebsan yang terpasang pada Bus 38 sebesar 25 KVA sehingga Arus Gangguan yang muncul relatif lebih kecil dari Bus 19.

KESIMPULAN DAN REKOMENDASI

Berdasarkan hasil penelitian Analisa Gangguan Hubung Singkat Satu Fasa Ke Tanah Pada Jaringan Distribusi 20 KV PT. PLN (Persero) Takengon dengan bantuan Software ETAP Power Station 12.6.0, dapat diambil beberapa kesimpulan, yaitu:

a. Dari hasil perhitungan arus gangguan penyulang coorda angkup menunjukkan bahwa arus hubung singkat tiga fasa lebih tinggi dari arus hubung fasa-fasa dan arus hubung singkat satu fasa, hal ini disebabkan karena pada arus hubung singkat tiga fasa dipengaruhi oleh impedansi urutan positif.

b. Dari hasil perhitungan arus gangguan penyulang Kota Takengon menunjukkan bahwa arus hubung singkat tiga fasa lebih tinggi dari arus hubung fasa-fasa dan arus hubung singkat satu fasa, hal ini disebabkan karena pada arus hubung singkat tiga fasa dipengaruhi oleh impedansi urutan positif.

REFERENSI

- [1] Hendriyadi. "Perhitungan Arus Gangguan Hubung Singkat Pada Jaringan Distribusi Di Kota Pontianak", Universitas Tanjungpura. Pontianak.
- [2] Samin, Tomi. 2019. "Analisa Gangguan Hubung Singkat Satu Fasa ke Tanah pada Jaringan Distribusi 20 KV PT. PLN (Persero) Sebatik Menggunakan Software ETAP Power Station 12.6.0", Jurnal Elektrika Borneo (JEB) Vol. 5, No. 1 April 2019 hlm 19-24. Universitas Borneo Tarakan. Tarakan, Kalimantan Utara
- [3] Syahiruddin H, Muh, dkk. "Analisis Hubung Singkat Satu Fasa Ke Tanah Pada Sistem Distribusi PT.PLN Rayon Belopa", Jurnal Teknologi Elektrika No. 2, Vol. 15 Politeknik Negeri Ujung Pandang. Makassar.
- [4] Indrawan, A. Wawan. 2016. "Analisis Gangguan Hubung Singkat Satu Fasa Ke Tanah Terhadap PMT di Penyulang Takalar 20 KV GI Sungguminasa". Prosiding Seminar Teknik Elektro & Informatika SNTEI 2016 Politeknik Negeri Ujung Pandang. Makassar.