## ANALISA TEKNOLOGI FOTOVOLTAIK SEBAGAI DISTRIBUTED GENERATION (DG) PADA SISTEM DISTRIBUSI MENGGUNAKAN SOFTWARE ELECTRIC TRANSIENT AND ANALYSIS PROGRAM (*ETAP*)

#### **Ariyono**

Teknik Eektro, Universita Malikussaleh Padang Sakti, Muara Satu, Kota Lhokseumawe, Aceh E-mail: ariyono0827@gmail.com

Abstrak - Energi listrik merupakan salah satu kebutuhan pokok masyarakat dalam beraktifitas, baik digunakan untuk keperluan rumah tangga maupun keperluan industri. Untuk memenuhi kebutuhan listrik di era ekonomi yang tumbuh sangat pesat ini membutuhkan banyak energi listrik. Oleh karena itu kualitas energi listrik perlu ditingkatkan. Letak pembangkit yang jauh dari beban juga menyebabkan tingginya nilai drop tegangan pada beberapa bus, selain itu juga menyebabkan rugi-rugi daya sistem yang cukup besar. Metode yang bisa digunakan pada penelitian ini dengan memasang teknologi fotovoltaik sebagai distributed generation (DG) atau pembangkit terdistribusi yang memiliki kapasitas daya yang lebih kecil dari pembangkit utama. Pemasangan pembangkit ini harus diikuti dengan penentuan lokasi dan kapasitas yang sesuai. Uji coba penentuan lokasi, besar kapasitas dan berapa jatuh tegangan setelah di pasang fotovoltaik pada sistem distribusi IEEE 34 bus sistem radial menggunakan simulasi di beberapa titik. Hasil yang paling baik dari beberapa titik simulasi yaitu pada bus 848 yang mengurangi nilai rata-rata tegangan menjadi 2,06 % dari tegangan yang sebenarnya dan mengurangi rugi-rugi daya total menjadi 129.18 kW.

Kata kunci: sistem distribusi, rugi-rugi daya, jatuh tegangan, pembangkit tersebar, fotovoltaik, software ETAP 12.6.0.

### I. PENDAHULUAN

Konsumsi listrik Indonesia setiap tahunnya terus meningkat sejalan dengan peningkatan pertumbuhan ekonomi nasional. Peningkatan kebutuhan listrik diperkirakan dapat tumbuh rata- rata 6,5% per tahun hingga tahun 2020 (Muchlis, 2003).

Matahari merupakan sumber energi utama bagi sebagian besar proses-proses yang terjadi di permukaan bumi. Radiasi matahari yang diterima permukaan bumi merupakan masukan fundamental untuk banyak aspek terutama merupakan parameter penting dalam aplikasi solar sel sebagi pembangkit listrik.

Fotovoltaik (sel matahari) merupakan piranti yang dapat mengkonversi cahaya matahari menjadi energi listrik. Energi matahari dapat menghasilkan daya hingga 156.486 MW,jumlah yang lebih besar jika dibandingkan dengan sumber energi terbarukan yang lainnya. Indonesia

merupakan negara yang terletak dalam jalur khatulistiwa yang sepanjang tahun mendapatkan cahaya matahari yang berlimpah dengan intensitas radiasi matahari rata-rata

sekitar 4.8 kWh/m<sup>2</sup> per hari di seluruh wilayah Indonesia. Pemanfaatan energi matahari sebagai PLTS sangat diminati dan mulai dikembangkan diseluruh pelosok negeri dengan melakukan banyak sekali penelitian serta pengujian.

Sebagian wilayah Indonesia yang belum terlistriki karena tidak terjangkau oleh jaringan listrik PLN, sehingga Pembangkit Listrik Tenaga Surya (PLTS) dengan sistemnya yang modular dan mudah dipindahkan merupakan salah satu solusi yang dapat dipertimbangkan sebagai salah satu pembangkit listrik alternatif. Sayangnya biaya pembangkitan PLTS masih lebih mahal apabila dibandingkan dengan biaya pembangkitan pembangkit listrik tenaga konvensional, karena sampai saat ini piranti utama untuk mengkonversi energi matahari menjadi energi listrik (modul fotovoltaik) masih merupakan piranti yang didatangkan dari luar negeri.

Penelitian ini dilakukan dengan menggunakan perangkat lunak dan biaya investasi PLTS yang bervariasi. Hasil penelitian ini dapat digunakan sebagai acuan dalam menentukan pembangkit listrik alternatif terutama di daerah terpencil. Photovoltaic (selsurya) merupakan piranti yang dapat mengkonversi cahaya matahari Menjadi energi listrik.

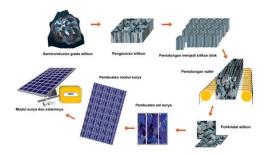
Ada beberapa hal yang perlu diperhatikan dalam pemanfaatan energi surya sebagai PLTS. Faktor-faktor yang mempengaruhi pengoptimalan energi surya menjadi energi listrik yaitu: pengaruh cuaca, kelembaban, temperatur, posisi sel surya serta arah angin yang terdapat pada permukan sel surya. Apabila ada yang menutupi lapisan luar sel surya, maka cahaya yang akan diterima oleh semi konduktor akan berkurang dan akan berimbas secara langsung terhadap proses konversi energi.

### II. DASAR TEORI

### 2.1 Sel surya

Sel surya atau yang disebut juga (Fotovoltaik) adalah piranti semiconductor yang dapat mengubah energi matahari secara langsung menjadi energ listrik DC (arus searah) dengan menggunakan kristal Si (silicon) yang tipis.Sebuah Kristal silindris Si diperoleh dengan cara

P ISSN 2303- 1360 E ISSN 2622- 2639


memanaskan Si itu dengan tekanan yang diatur sehingga Si itu berubah menjadi penghantar. Bila kristal silindris itu dipotong stebal 0,3 mm, akan terbentuklah sel-sel silikon yang tipis atau yang disebut juga dengan sel surya (fotovoltaik). Sel-sel silicon itu dipasang dengan posisi sejajar/seri dalam sebuah panel yang terbuat dari alumunium atau baja anti karat dan dilindungi oleh kaca atau plastik. Kemudian pada tiap-tiap sambungan sel itu diberi sambungan yang berbeda potensial yang menyatu disebut dengan daerah deplesi (depletion region). Bila selsel itu terkena sinar matahari maka pada sambungan itu akan mengalir arus listrik. Besarnya arus/tenaga listrik itu tergantun pada jumlah energi cahaya yang mencapai silikon itu dan luas permukaan sel itu

Ketika seberkas cahaya dikenakan pada logam, ada elektron yang keluar dari permukaan logam. Gejala ini disebut efek fotolistrik. Efek fotolistrik diamati melalui prosedur sebagai berikut. Dua buah pelat logam (lempengan logam tipis) yang terpisah ditempatkan di dalam tabung hampa udara. Di luar tabung kedua pelat ini dihubungkan satu sama lain dengan kawat. Mula-mula tidak ada arus yang mengalir karena kedua plat terpisah. Ketika cahaya yang sesuai dikenakan kepada salah satu pelat, arus listrik terdeteksi pada kawat. Ini terjadi akibat adanya elektron-elektron yang lepas dari satu pelat dan menuju ke pelat lain secara bersama-sama membentuk arus listrik. Hasil pengamatan terhadap gejala efek fotolistrik memunculkan sejumlah fakta yang merupakan karakteristik dari efek fotolistrik.

Listrik tenaga surya diperoleh dengan melalui sistem photo-voltaic. Photo-voltaic terdiri dari photo dan voltaic. Photo berasal dari kata Yunani phos yang berarti cahaya. Sedangkan voltaic diambil dari nama Alessandro Volta (1745 - 1827), seorang pelopor dalam pengkajian mengenai listrik. Sehingga photo-voltaic dapat berarti listrik-cahaya. Belakangan ini, photo-voltaic lebih sering disebut solar cell atau sel surya, karena cahaya yang dijadikan energi listrik adalah sinar matahari. Sel surya merupakan suatu pn junction dari silikon kristal tunggal. Dengan menggunakan photo-electric effect dari bahan semikonduktor, sel surya dapat langsung mengkonversi sinar matahari menjadi listrik searah (dc). Bila sel surya itu dikenakan pada sinar matahari, maka timbul yang dinamakan elektron dan hole. Elektron-elektron dan hole-hole yang timbul di sekitar pn junction bergerak berturut-turut ke arah lapisan n dan ke arah lapisan p. Sehingga pada saat elektron-elektron dan hole-hole itu melintasi pn junction, timbul beda potensial pada kedua ujung sel surya. Jika pada kedua ujung sel surya diberi beban maka timbul arus listrik yang mengalir melalui beban. Sebuah sel surya tunggal dapat menghasilkan listrik searah 3 volt dan 3 ampere. Sel-sel ini dapat dibuat dalam ukuran yang diinginkan dengan jalan menghubungkan seri sel-sel yang sama untuk membentuk modul sel surya dengan keluaran yang diperlukan.

#### 2.2 Prinsip kerja fotovoltaik

Cahaya yang jatuh pada sel surya menghasilkan elektron yang bermuatan positif dan "hole" yang bermuatan negatif. Elektron dan "hole" mengalir membentuk arus listrik

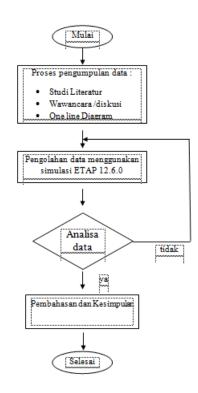


Gambar. 2.1. Prinsip kerja sel surya

### 2.3 Jaringan Distribusi

Jaringan distribusi merupakan bagian sistem tenaga listrik yang paling dekat dengan pelanggan, dan bertugas menyalurkan tenaga listrik dari stasiun-stasiun suplay tenaga listrik kepada pelanggan. Dalam pengoperasian sistem distribusi, masalah yang utama adalah mengatasi gangguan karena jumlah gangguan pada sistem distribusi relatif lebih banyak bila dibandingkan dengan jumlah gangguan pada sisi pembangkit maupun transmisi. Dengan memperhatikan masalah ini, maka dalam perencanaan pengambangan sistem tenaga listrik senantiasa disertai upaya-upaya guna penyempurnaan operasi sistem distribusi

Sistem tenaga listrik merupakan sistem sarana penyaluran tenaga listrik dari titik sumber ke titik pusat beban. Penyaluran tenaga listrik ini mempunyai peranan penting dalam menyuplai tenaga listrik ke konsumen, Hal ini dikarenakan apabila terjadi gangguan pada penyaluran tenaga listrik maka dapat mengakibatkan kerugian baik pada konsumen maupun pada PLN sendiri.


### 2.4 Pembangkit Tersebar (Distributed Generation)

Pembangkit tersebar (*Distributed Generation*) merupakan pembangkit energi listrik berkapasitas kecil dari sumber energi yang ada disekitarnya dan dihubungkan langsung pada jaringan distribusi. Distributed generation bukanlah pembangkit energi terbarukan, dikarenakan sumber energi yang dapat dimanfaatkan dalam pembangunan pembangkit tersebar ini bukan hanya sumber energi terbarukan saja, energi tidak terbarukan juga bisa dimanfaatkan.

Jaringan distribusi dari gardu induk sampai ke kWh meter ditempat konsumen, terdiri dari dua bagian yaitu jaringan distribusi primer atau yang dikenal dengan jaringan tegangan menengah (JTM) dan jaringan tegangan sekunder atau yang dikenal dengan jaringan tegangan rendah (JTR). Jaringan tegangan menengah umumnya bekerja pada tegangan 20 kV, sedangkan jaringan tegangan rendah umumnya bekerja pada tegangan 380/220 Volt.

#### III METODE PENELITIAN

#### 3.1 Diagram Alur Penelitian



#### IV ANALISA DAN PEMBAHASAN

## 4.1 Analisa Aliran Daya pada Sistem Distribusi IEEE 34 bus

Berdasarkan data one line diagram IEEE 34 Bus dilanjutkan dengan mensimulasikan aliran daya (*load flow*) jaringan distribusi IEEE 34 Bus menggunakan *Electrical Transient and Analysis Simulation* (ETAP). Dari pengolahan data tersebut didapatkan profil tegangan dan rugi-rugi daya (*losses*), dimana hasil simulasi yang didapatkan adalah sebagai berikut:

Tabel 4.1 data jatuh tegangan pada sistem distribusi IEEE 34 bus

|          | Januar 1981  |                |          |                 |
|----------|--------------|----------------|----------|-----------------|
| Kode bus | Nominal (kv) | Hasil simulasi |          | Keterangan      |
|          | Nominai (kv) | (%)            | (kV)     |                 |
| Bus 800  | 24.9         | 100            | 24.9     | jaringan primer |
| Bus 802  | 24.9         | 99.76          | 24.84024 | jaringan primer |
| Bus 806  | 24.9         | 99.6           | 24.8004  | jaringan primer |
| Bus 808  | 24.9         | 96.68          | 24.07332 | jaringan primer |
| Bus 812  | 24.9         | 93.3           | 23.2317  | jaringan primer |
| Bus 814  | 24.9         | 90.6           | 22.5594  | jaringan primer |
| Bus 816  | 24.9         | 90.56          | 22.54944 | jaringan primer |
| Bus 824  | 24.9         | 89.54          | 22.29546 | jaringan primer |
| Bus 828  | 24.9         | 89.45          | 22.27305 | jaringan primer |
| Bus 830  | 24.9         | 87.46          | 21.77754 | jaringan primer |
| Bus 832  | 24.9         | 83.92          | 20.89608 | jaringan primer |
| Bus 834  | 24.9         | 83.23          | 20.72427 | jaringan primer |
| Bus 836  | 24.9         | 83.15          | 20.70435 | jaringan primer |
| Bus 840  | 24.9         | 83.15          | 20.70435 | jaringan primer |
| Bus 842  | 24.9         | 83.22          | 20.72178 | jaringan primer |
| Bus 844  | 24.9         | 83.17          | 20.70933 | jaringan primer |
| Bus 846  | 24.9         | 83.13          | 20.69937 | jaringan primer |
| Bus 848  | 24.9         | 83.13          | 20.69937 | jaringan primer |
| Bus 850  | 24 9         | 90.6           | 22.5594  | jaringan primer |

| Bus 852 | 24.9 | 83.92 | 20.89608 | jaringan primer   |
|---------|------|-------|----------|-------------------|
| Bus 854 | 24.9 | 87.41 | 21.76509 | jaringan primer   |
| Bus 858 | 24.9 | 83.6  | 20.8164  | jaringan primer   |
| Bus 860 | 24.9 | 83.18 | 20.71182 | jaringan primer   |
| Bus 862 | 24.9 | 83.15 | 20.70435 | jaringan primer   |
| Bus 888 | 4.16 | 80.35 | 3.34256  | jaringan sekunder |
| Bus 890 | 4.16 | 71.07 | 2.956512 | jaringan sekunder |

Dari data tabel 4.1 di atas berdasarkan simulasi aliran daya pada sistem distribusi IEEE 34 bus yang telah dilakukan, dapat dilihat 4 bus yang memiliki nilai tegangan dalam keadaan normal pada sistem ini dan 24 bus lainnya mengalami jatuh tegangan diatas 5% dari tegangan nominal. Sedangkan 8 bus lagi terdapat pada saluran 1 fasa yang mana pada penelitian ini diabaikan.

Nilai jatuh tegangan pertama di atas 5% terdapat pada bus 812 dalam kondisi *marginal* dengan besar jatuh tegangan 6,7% yaitu sebesar 1.66 kV. Jatuh tegangan yang paling tinggi terdapat pada bus 858 dengan besar jatuh tegangan 16% dari tegangan seharusnya atau sebesar 4,2 kV. Jatuh tegangan dalam kondisi *marginal* berjumlah 4 bus yaitu terdapat pada bus 812, 814, 816, dan 850, sedangkan jatuh tegangan dalam kondisi *critical* berjumlah 18 diantaranya 16 bus di jaringan primer yaitu terdapat pada bus 824, 828, 830, 832, 834, 836, 840, 842, 844, 846, 848, 852, 854, 858, 860, 862, dan 2 bus di jaringan sekunder yaitu terdapat pada bus 888 dan 890.

Total bus yang mengalami jatuh tegangan pada sistem distribusi IEEE 34 bus ini yaitu sebanyak 22 bus dengan rata-rata jatuh tegangan 12,95% atau 3,22 kV. Rata-rata jatuh tegangan pada sistem ini tergolong sangat besar karena banyak jatuh tegangan dalam kondisi *critical*, kondisi inilah yang perlu kita atasi agar tegangan yang diterima oleh pengguna energi listrik mendapatkan tegangan yang optimal.

Tabel 4.2 data rugi-rugi daya pada sistem distribusi IEEE 34 bus

| kode saluran | Saluran Bus |         | Panjang           | Rugi-Rugi Daya |
|--------------|-------------|---------|-------------------|----------------|
| Kode Saluran | Dari        | Ke      | Saluran           | (kW)           |
| Saluran 1    | Bus 800     | Bus 802 | 2580 ft           | 3.948          |
| Saluran 2    | Bus 802     | Bus 806 | 1730 ft           | 2.649          |
| Saluran 3    | Bus 806     | Bus 808 | 32230 ft          | 46.493         |
| Saluran 4    | Bus 808     | Bus 812 | 37500 ft          | 53.726         |
| Saluran 6    | Bus 812     | Bus 814 | 29730 ft          | 43.094         |
| Saluran 7    | Bus 814     | Bus 850 | 10 ft             | 0.019          |
| Saluran 8    | Bus 850     | Bus 816 | 310 ft            | 0.596          |
| Saluran 12   | Bus 816     | Bus 824 | 10210 ft          | 15.651         |
| Saluran 14   | Bus 824     | Bus 828 | 840 ft            | 1.214          |
| Saluran 15   | Bus 828     | Bus 830 | 20440 ft          | 29.483         |
| Saluran 16   | Bus 830     | Bus 854 | 520 ft            | 0.707          |
| Saluran 18   | Bus 854     | Bus 852 | 36830 ft          | 50.09          |
| Saluran 19   | Bus 852     | Bus 832 | 10 ft             | 0.014          |
| Saluran 20   | Bus 888     | Bus 890 | 10560 ft          | 40.234         |
| Saluran 21   | Bus 832     | Bus 858 | 4900 ft           | 3.114          |
| Saluran 22   | Bus 858     | Bus 834 | 5830 ft           | 3.605          |
| Saluran 23   | Bus 834     | Bus 860 | 2020 ft           | 0.193          |
| Saluran 24   | Bus 860     | Bus 836 | 2680 ft           | 0.054          |
| Saluran 25   | Bus 836     | Bus 862 | 280 ft            | 0              |
| Saluran 27   | Bus 836     | Bus 840 | 860 ft            | 0.003          |
| Saluran 29   | Bus 834     | Bus 842 | 280 ft            | 0.059          |
| Saluran 30   | Bus 842     | Bus 844 | 1350 ft           | 0.282          |
| Saluran 31   | Bus 844     | Bus 846 | 3640 ft           | 0.066          |
| Saluran 32   | Bus 846     | Bus 848 | 530 ft            | 0.004          |
| XFM-1        | Bus 832     | Bus 888 | 24,9 / 4,16<br>kV | 11.425         |
| Total        |             |         | 1                 | 306.723 kW     |

Dari tabel 4.2 diatas, total rugi-rugi daya pada sistem IEEE 34 bus berjumlah 306,723 kW. Dimana terdapat tujuh

P ISSN 2303- 1360 E ISSN 2622- 2639

| saluran yang memiliki rugi-rugi daya tinggi yaitu di atas 10 |
|--------------------------------------------------------------|
| kW. Saluran yang memilikirugi-rugi daya sangatbesar yaitu    |
| pada saluran 4 yang menghubungkan bus 808 dengan bus         |
| 812 sebesar 53,726 kW, dengan panjang saluran 37500 ft       |
| yang mana saluran ini merupakan saluran dengan jarak         |
| terpanjang.                                                  |

## 3.2 Analisa Pemasangan pembangkit tersebar pada sistem distribusi IEEE 34 bus

Berdasarkan pengolahan data aliran daya pada sistem distribusi IEEE 34 bus terjadi jatuh tegangan dan rugi-rugi daya yang sangat tinggi, dalam hal ini perlu diperbaiki dengan menggunakan pembangkit tersebar salah satunya menggunakan sistem fotovoltaik, pemasangannya dilakukan pada bus-bus berikut ini:

- a. Bus 812, merupakan bus yang memiliki jatuh tegangan pertama kali di atas 5%
- b. Bus 858, merupakan bus yang mengalami jatuh tegangan paling besar yaitu 16%
- c. Bus 848, merupakan bus yang paling jauh dari bus utama atau sumber energy listrik yaitu dengan jarak 191.730 ft.

## 4.2.1 Pemasangan pembangkit tersebar fotovoltaik pada Bus 812

Tabel 4.3 Data spesifikasi pembangkit tersebar pada bus 812 sistem distribusi IEEE 34 bus

| , | Terminal | Jenis       |             | Pane       | ıl.   | Inve    | rter |
|---|----------|-------------|-------------|------------|-------|---------|------|
|   | bus      | Fotovoltaik | Tipe        |            | Total |         |      |
|   | ous      | FOLOVOILAIK |             | Watt/panel | panel | DC      | AC   |
|   |          |             | Poly-       |            |       |         | 1800 |
|   | Bus 812  | SUNTECH     | cristalline | 282,5/1    | 7.08  | 2000 kW | Kva  |

Dari tabel 4.3 di atas pemasangan pembangkit tersebar memiliki 282,5 watt per panel dengan total panel 7.080, maka akan menghasilkan tegangan DC 2000 kW pada inverter dan diubah ke tegangan AC menjadi 1800 kva. Untuk nilai jatuh tegangan setelah adanya pemasangan pembangkit tersebar dapat dilihat pada tabel 4.4 di bawah ini:

Tabel 4.4 data jatuh tegangan setelah pemasangan pembangkit tersebar pada bus 812 sistem distribusi IEEE 34 bus

| 17 - 1 -    | Tegangan |       |             |        |            |  |  |
|-------------|----------|-------|-------------|--------|------------|--|--|
| Kode<br>Bus | Nominal  | Sesud | ah Simulasi | Sebelu | m Simulasi |  |  |
| Dus         | (KV)     | (%)   | (kV)        | (%)    | (kV)       |  |  |
| Bus 800     | 24.9     | 100   | 24.9        | 100    | 24.9       |  |  |
| Bus 802     | 24.9     | 99.95 | 24.88755    | 99.76  | 24.84024   |  |  |
| Bus 806     | 24.9     | 99.91 | 24.87759    | 99.6   | 24.8004    |  |  |
| Bus 808     | 24.9     | 99.34 | 24.73566    | 96.68  | 24.07332   |  |  |
| Bus 812     | 24.9     | 98.7  | 24.5763     | 93.3   | 23.2317    |  |  |
| Bus 814     | 24.9     | 95.98 | 23.89902    | 90.6   | 22.5594    |  |  |
| Bus 816     | 24.9     | 95.95 | 23.89155    | 90.56  | 22.54944   |  |  |
| Bus 824     | 24.9     | 94.91 | 23.63259    | 89.54  | 22.29546   |  |  |
| Bus 828     | 24.9     | 94.82 | 23.61018    | 89.45  | 22.27305   |  |  |
| Bus 830     | 24.9     | 92.8  | 23.1072     | 87.46  | 21.77754   |  |  |
| Bus 832     | 24.9     | 89.21 | 22.21329    | 83.92  | 20.89608   |  |  |
| Bus 834     | 24.9     | 88.51 | 22.03899    | 83.23  | 20.72427   |  |  |
| Bus 836     | 24.9     | 88.43 | 22.01907    | 83.15  | 20.70435   |  |  |
| Bus 840     | 24.9     | 88.43 | 22.01907    | 83.15  | 20.70435   |  |  |
| Bus 842     | 24.9     | 88.5  | 22.0365     | 83.22  | 20.72178   |  |  |
| Bus 844     | 24.9     | 88.45 | 22.02405    | 83.17  | 20.70933   |  |  |
| Bus 846     | 24.9     | 88.41 | 22.01409    | 83.13  | 20.69937   |  |  |
| Bus 848     | 24.9     | 88.41 | 22.01409    | 83.13  | 20.69937   |  |  |
| Bus 850     | 24.9     | 95.98 | 23.89902    | 90.6   | 22.5594    |  |  |
| Bus 852     | 24.9     | 89.21 | 22.21329    | 83.92  | 20.89608   |  |  |
| Bus 854     | 24.9     | 92.75 | 23.09475    | 87.41  | 21.76509   |  |  |
| Bus 858     | 24.9     | 88.89 | 22.13361    | 83.6   | 20.8164    |  |  |

| Bus 860 | 24.9 | 88.46 | 22.02654 | 83.18 | 20.71182 |
|---------|------|-------|----------|-------|----------|
| Bus 862 | 24.9 | 88.43 | 22.01907 | 83.15 | 20.70435 |
| Bus 888 | 4.16 | 85.66 | 3.563456 | 80.35 | 3.34256  |
| Bus 890 | 4.16 | 76.41 | 3.178656 | 71.07 | 2.956512 |

Nilai rata-rata jatuh tegangan setelah pemasangan fotovoltaik pada bus 812 ini mememiliki nilai rata-rata jatuh tegangan 7,31% atau 1,8 kV kemudian menjadi turun sebesar 5,64 atau 1,4 kV dari rata-rata jatuh tegangan sebelum pemasangan pembangkit tersebar sebesar 12,95% dari tegangan nominal atau sebesar 3,2 kV.

Tabel 4.5 data rugi-rugi daya setelah pemasangan pembangkit tersebar pada bus 812 sistem distribusi IEEE 34 bus

| tersebar pada bus 612 sistem distribusi IEEE 54 bus |         |         |           |             |             |  |  |  |
|-----------------------------------------------------|---------|---------|-----------|-------------|-------------|--|--|--|
|                                                     | I       | Bus     |           | Rugi-Rugi   | Daya kW     |  |  |  |
| Kode                                                |         |         | Panjang   | Sesudah     | Sebelum     |  |  |  |
| Saluran                                             | Dari    | Ke      | Saluran   | pemasangan  | pemasangan  |  |  |  |
|                                                     |         |         |           | Fotovoltaik | Fotovoltaik |  |  |  |
| Saluran 1                                           | Bus 800 | Bus 802 | 2580 ft   | 10.374      | 3.948       |  |  |  |
| Saluran 2                                           | Bus 802 | Bus 806 | 1730 ft   | 0.85        | 2.649       |  |  |  |
| Saluran 3                                           | Bus 806 | Bus 808 | 32230 ft  | 0.572       | 46.493      |  |  |  |
| Saluran 4                                           | Bus 808 | Bus 812 | 37500 ft  | 12.598      | 53.726      |  |  |  |
| Saluran 6                                           | Bus 812 | Bus 814 | 29730 ft  | 43.744      | 43.094      |  |  |  |
| Saluran 7                                           | Bus 814 | Bus 850 | 10 ft     | 0.02        | 0.019       |  |  |  |
| Saluran 8                                           | Bus 850 | Bus 816 | 310 ft    | 0.605       | 0.596       |  |  |  |
| Saluran 12                                          | Bus 816 | Bus 824 | 10210 ft  | 16.061      | 15.651      |  |  |  |
| Saluran 14                                          | Bus 824 | Bus 828 | 840 ft    | 1.247       | 1.214       |  |  |  |
| Saluran 15                                          | Bus 828 | Bus 830 | 20440 ft  | 30.308      | 29.483      |  |  |  |
| Saluran 16                                          | Bus 830 | Bus 854 | 520 ft    | 0.725       | 0.707       |  |  |  |
| Saluran 18                                          | Bus 854 | Bus 852 | 36830 ft  | 51.439      | 50.09       |  |  |  |
| Saluran 19                                          | Bus 852 | Bus 832 | 10 ft     | 0.014       | 0.014       |  |  |  |
| Saluran 20                                          | Bus 888 | Bus 890 | 10560 ft  | 39.982      | 40.234      |  |  |  |
| Saluran 21                                          | Bus 832 | Bus 858 | 4900 ft   | 3.249       | 3.114       |  |  |  |
| Saluran 22                                          | Bus 858 | Bus 834 | 5830 ft   | 3.759       | 3.605       |  |  |  |
| Saluran 23                                          | Bus 834 | Bus 860 | 2020 ft   | 0.198       | 0.193       |  |  |  |
| Saluran 24                                          | Bus 860 | Bus 836 | 2680 ft   | 0.056       | 0.054       |  |  |  |
| Saluran 25                                          | Bus 836 | Bus 862 | 280 ft    | 0           | 0           |  |  |  |
| Saluran 27                                          | Bus 836 | Bus 840 | 860 ft    | 0.003       | 0.003       |  |  |  |
| Saluran 29                                          | Bus 834 | Bus 842 | 280 ft    | 0.061       | 0.059       |  |  |  |
| Saluran 30                                          | Bus 842 | Bus 844 | 1350 ft   | 0.297       | 0.282       |  |  |  |
| Saluran 31                                          | Bus 844 | Bus 846 | 3640 ft   | 0.058       | 0.066       |  |  |  |
| Saluran 32                                          | Bus 846 | Bus 848 | 530 ft    | 0.004       | 0.004       |  |  |  |
|                                                     | Bus 832 | Bus 888 | 24,9/4,16 | 11.353      |             |  |  |  |
| XFM-1                                               | Dus 632 | DUS 000 | kV        | 11.333      | 11.425      |  |  |  |
|                                                     |         |         |           | 227.577     | 306.723     |  |  |  |
| Total                                               |         |         |           | kW          | kW          |  |  |  |

Dari tabel 4.5 setelah pemasangan pembangkit tersebar fotovoltaik pada bus 812 rugi-rugi daya yang ada pada sistem IEEE 34 bus ini berkurang 79,146 kW yang awalnya sebelum pemasangan fotovoltaik sebesar 306,723 kW, sehingga menjadi 227,557 kW. Rugi-rugi daya terbesar terdapat pada saluran yang memiliki jarak paling jauh pada saluran 4 yang sebelumnyamemiliki rugi-rugi daya terbesar pada sebelum pemasangan fotovoltaik dan kini menjadi sebesar 0,003 kW.

## 4.2.2 Pemasangan Pembangkit Tersebar Fotovoltaik Pada

Tabel 4.6 Data spesifikasi pembangkit tersebar pada bus 858 sistem distribusi IEEE 34 bus

| Terminal | Jenis       |             | Panel      |       | Inverter |      |
|----------|-------------|-------------|------------|-------|----------|------|
| bus      | Fotovoltaik | Tipe        |            | Total |          |      |
| bus      | rotovoitaik |             | Watt/panel | panel | DC       | AC   |
|          |             | Poly-       |            |       | 2000     | 1800 |
| Bus 858  | SUNTECH     | cristalline | 282,5/1    | 7.08  | kW       | Kva  |

Dari tabel 4.6 diatas pemasangan pembangkit tersebar memiliki 282,5 watt per panel dengan total panel 7.080,

maka akan menghasilkan tegangan DC 2000 kW pada inverter dan diubah ke tegangan AC menjadi 1800 kva untuk bus 858.

Tabel 4.7 data jatuh tegangan setelah pemasangan pembangkit tersebar pada bus 858 sistem distribusi IEEE 34 bus

| 1        |         | Tegangan |          |         |          |  |  |  |  |
|----------|---------|----------|----------|---------|----------|--|--|--|--|
| Kode Bus | Nominal | Sesudah  |          | Sebelum | Simulasi |  |  |  |  |
|          | (KV)    | (%)      | (kV)     | (%)     | (kV)     |  |  |  |  |
| Bus 800  | 24.9    | 100      | 24.9     | 100     | 24.9     |  |  |  |  |
| Bus 802  | 24.9    | 99.94    | 24.88506 | 99.76   | 24.84024 |  |  |  |  |
| Bus 806  | 24.9    | 99.9     | 24.8751  | 99.6    | 24.8004  |  |  |  |  |
| Bus 808  | 24.9    | 99.21    | 24.70329 | 96.68   | 24.07332 |  |  |  |  |
| Bus 812  | 24.9    | 98.43    | 24.50907 | 93.3    | 23.2317  |  |  |  |  |
| Bus 814  | 24.9    | 97.82    | 24.35718 | 90.6    | 22.5594  |  |  |  |  |
| Bus 816  | 24.9    | 97.81    | 24.35469 | 90.56   | 22.54944 |  |  |  |  |
| Bus 824  | 24.9    | 97.73    | 24.33477 | 89.54   | 22.29546 |  |  |  |  |
| Bus 828  | 24.9    | 97.73    | 24.33477 | 89.45   | 22.27305 |  |  |  |  |
| Bus 830  | 24.9    | 97.64    | 24.31236 | 87.46   | 21.77754 |  |  |  |  |
| Bus 832  | 24.9    | 97.63    | 24.30987 | 83.92   | 20.89608 |  |  |  |  |
| Bus 834  | 24.9    | 97.38    | 24.24762 | 83.23   | 20.72427 |  |  |  |  |
| Bus 836  | 24.9    | 97.3     | 24.2277  | 83.15   | 20.70435 |  |  |  |  |
| Bus 840  | 24.9    | 97.29    | 24.22521 | 83.15   | 20.70435 |  |  |  |  |
| Bus 842  | 24.9    | 97.37    | 24.24513 | 83.22   | 20.72178 |  |  |  |  |
| Bus 844  | 24.9    | 97.32    | 24.23268 | 83.17   | 20.70933 |  |  |  |  |
| Bus 846  | 24.9    | 97.28    | 24.22272 | 83.13   | 20.69937 |  |  |  |  |
| Bus 848  | 24.9    | 97.28    | 24.22272 | 83.13   | 20.69937 |  |  |  |  |
| Bus 850  | 24.9    | 97.82    | 24.35718 | 90.6    | 22.5594  |  |  |  |  |
| Bus 852  | 24.9    | 97.63    | 24.30987 | 83.92   | 20.89608 |  |  |  |  |
| Bus 854  | 24.9    | 97.64    | 24.31236 | 87.41   | 21.76509 |  |  |  |  |
| Bus 858  | 24.9    | 97.78    | 24.34722 | 83.6    | 20.8164  |  |  |  |  |
| Bus 860  | 24.9    | 97.33    | 24.23517 | 83.18   | 20.71182 |  |  |  |  |
| Bus 862  | 24.9    | 97.3     | 24.2277  | 83.15   | 20.70435 |  |  |  |  |
| Bus 888  | 4.16    | 94.09    | 3.914144 | 80.35   | 3.34256  |  |  |  |  |
| Bus 890  | 4.16    | 84.89    | 3.531424 | 71.07   | 2.956512 |  |  |  |  |

Nilai rata-rata jatuh tegangan hanya 2,06 % atau sebesar 0,56 kV dengan demikian jatuh tegangan sudah diperbaiki dari yang belum di pasang pembangkit tersebar fotovoltaik sebesar 12,06% atau 3,06 kV dan lebih baik sistem dari pembangkit tersebar fotovoltaik yang dipasang pada bus 812 sebesar 5,25 % atau 1,24 Kv

Tabel 4.8 Data rugi-rugi daya setelah pemasangan pembangkit tersebar fotovoltaik 858 sistem distribusi IEEE 34 bus

|            | Bus     |         |          | Rugi-Rugi Daya kW |             |  |
|------------|---------|---------|----------|-------------------|-------------|--|
| Kode       |         |         | Panjang  | Setelah           | Sebelum     |  |
| Saluran    | Dari    | Ke      | Saluran  | pemasangan        | pemasangan  |  |
|            |         |         |          | Fotovoltaik       | Fotovoltaik |  |
| Saluran 1  | Bus 800 | Bus 802 | 2580 ft  | 11.246            | 3.948       |  |
| Saluran 2  | Bus 802 | Bus 806 | 1730 ft  | 0.929             | 2.649       |  |
| Saluran 3  | Bus 806 | Bus 808 | 32230 ft | 0.625             | 46.493      |  |
| Saluran 4  | Bus 808 | Bus 812 | 37500 ft | 13.603            | 53.726      |  |
| Saluran 6  | Bus 812 | Bus 814 | 29730 ft | 11.339            | 43.094      |  |
| Saluran 7  | Bus 814 | Bus 850 | 10 ft    | 0.005             | 0.019       |  |
| Saluran 8  | Bus 850 | Bus 816 | 310 ft   | 0.159             | 0.596       |  |
| Saluran 12 | Bus 816 | Bus 824 | 10210 ft | 4.726             | 15.651      |  |
| Saluran 14 | Bus 824 | Bus 828 | 840 ft   | 0.386             | 1.214       |  |
| Saluran 15 | Bus 828 | Bus 830 | 20440 ft | 9.532             | 29.483      |  |
| Saluran 16 | Bus 830 | Bus 854 | 520 ft   | 0.245             | 0.707       |  |
| Saluran 18 | Bus 854 | Bus 852 | 36830 ft | 17.802            | 50.09       |  |
| Saluran 19 | Bus 852 | Bus 832 | 10 ft    | 0.005             | 0.014       |  |
| Saluran 20 | Bus 888 | Bus 890 | 10560 ft | 39.59             | 40.234      |  |
| Saluran 21 | Bus 832 | Bus 858 | 4900 ft  | 2.974             | 3.114       |  |
| Saluran 22 | Bus 858 | Bus 834 | 5830 ft  | 4.06              | 3.605       |  |
| Saluran 23 | Bus 834 | Bus 860 | 2020 ft  | 0.209             | 0.193       |  |
| Saluran 24 | Bus 860 | Bus 836 | 2680 ft  | 0.058             | 0.054       |  |
| Saluran 25 | Bus 836 | Bus 862 | 280 ft   | 0                 | 0           |  |
| Saluran 27 | Bus 836 | Bus 840 | 860 ft   | 0.003             | 0.003       |  |
| Saluran 29 | Bus 834 | Bus 842 | 280 ft   | 0.067             | 0.059       |  |
| Saluran 30 | Bus 842 | Bus 844 | 1350 ft  | 0.324             | 0.282       |  |
| Saluran 31 | Bus 844 | Bus 846 | 3640 ft  | 0.048             | 0.066       |  |
| Saluran 32 | Bus 846 | Bus 848 | 530 ft   | 0.003             | 0.004       |  |
|            |         |         | 24,9 /   | 11.242            |             |  |
| XFM-1      | Bus 832 | Bus 888 | 4,16 kV  | 11,272            | 11.425      |  |

Total 129.18 kW 306.723 kW

Dari tabel 4.8 setelah pemasangan pembangkit tersebar fotovoltaik pada bus 858 rugi-rugi daya yang ada pada sistem IEEE 34 bus ini berkurang 177,543 kW yang awalnya sebelum pemasangan fotovoltaik sebesar 306,723 kW, sehingga menjadi 129,18 kW. Rugi-rugi daya hanya terdapat pada saluran 20 yang berada pada jaringan sekunder dan pada saluran XFM-1.

#### 4.2.3 pemasangan Pembangkit tersebar Fotovoltaik pada Bus 848

Tabel 4.9 Data spesifikasi pembangkit tersebar pada bus 848 sistem distribusi IEEE 34 bus

| Terminal Jenis |             | Tino                 | Panel      |                | Inverter |          |
|----------------|-------------|----------------------|------------|----------------|----------|----------|
| bus            | Fotovoltaik | Tipe                 | Watt/panel | Total<br>panel | DC       | AC       |
| Bus 848        | SUNTECH     | Poly-<br>cristalline | 282,5/1    | 7.08           | 2000 kW  | 1800 Kva |

Dari tabel 4.9 diatas pemasangan pembangkit tersebar memiliki 282,5 watt per panel dengan total panel 7.080, maka akan menghasilkan tegangan DC 2000 kW pada inverter dan diubah ke tegangan AC menjadi 1800 kva untuk bus 848.

Tabel 4.10 data jatuh tegangan setelah pemasangan pembangkit tersebar fotovoltaik pada bus 848 sistem distribusi IEEE 34 bus

| tersebar fotovortark pada bus 648 sistem distribusi ieee 34 bus |          |           |          |                  |          |  |  |
|-----------------------------------------------------------------|----------|-----------|----------|------------------|----------|--|--|
| Kode                                                            | Tegangan |           |          |                  |          |  |  |
| Bus                                                             | Nominal  | Sesudah S | imulasi  | Sebelum Simulasi |          |  |  |
| Dus                                                             | (KV)     | (%)       | (kV)     | (%)              | (kV)     |  |  |
| Bus 800                                                         | 24.9     | 100       | 24.9     | 100              | 24.9     |  |  |
| Bus 802                                                         | 24.9     | 99.94     | 24.88506 | 99.76            | 24.84024 |  |  |
| Bus 806                                                         | 24.9     | 99.89     | 24.87261 | 99.6             | 24.8004  |  |  |
| Bus 808                                                         | 24.9     | 99.18     | 24.69582 | 96.68            | 24.07332 |  |  |
| Bus 812                                                         | 24.9     | 98.38     | 24.49662 | 93.3             | 23.2317  |  |  |
| Bus 814                                                         | 24.9     | 97.74     | 24.33726 | 90.6             | 22.5594  |  |  |
| Bus 816                                                         | 24.9     | 97.73     | 24.33477 | 90.56            | 22.54944 |  |  |
| Bus 824                                                         | 24.9     | 97.64     | 24.31236 | 89.54            | 22.29546 |  |  |
| Bus 828                                                         | 24.9     | 97.64     | 24.31236 | 89.45            | 22.27305 |  |  |
| Bus 830                                                         | 24.9     | 97.53     | 24.28497 | 87.46            | 21.77754 |  |  |
| Bus 832                                                         | 24.9     | 97.48     | 24.27252 | 83.92            | 20.89608 |  |  |
| Bus 834                                                         | 24.9     | 97.8      | 24.3522  | 83.23            | 20.72427 |  |  |
| Bus 836                                                         | 24.9     | 97.72     | 24.33228 | 83.15            | 20.70435 |  |  |
| Bus 840                                                         | 24.9     | 97.71     | 24.32979 | 83.15            | 20.70435 |  |  |
| Bus 842                                                         | 24.9     | 97.82     | 24.35718 | 83.22            | 20.72178 |  |  |
| Bus 844                                                         | 24.9     | 97.9      | 24.3771  | 83.17            | 20.70933 |  |  |
| Bus 846                                                         | 24.9     | 98.22     | 24.45678 | 83.13            | 20.69937 |  |  |
| Bus 848                                                         | 24.9     | 98.27     | 24.46923 | 83.13            | 20.69937 |  |  |
| Bus 850                                                         | 24.9     | 97.74     | 24.33726 | 90.6             | 22.5594  |  |  |
| Bus 852                                                         | 24.9     | 97.48     | 24.27252 | 83.92            | 20.89608 |  |  |
| Bus 854                                                         | 24.9     | 97.53     | 24.28497 | 87.41            | 21.76509 |  |  |
| Bus 858                                                         | 24.9     | 97.62     | 24.30738 | 83.6             | 20.8164  |  |  |
| Bus 860                                                         | 24.9     | 97.75     | 24.33975 | 83.18            | 20.71182 |  |  |
| Bus 862                                                         | 24.9     | 97.72     | 24.33228 | 83.15            | 20.70435 |  |  |
| Bus 888                                                         | 4.16     | 93.95     | 3.90832  | 80.35            | 3.34256  |  |  |
| Bus 890                                                         | 4.16     | 84.74     | 3.525184 | 71.07            | 2.956512 |  |  |

Nilai rata-rata jatuh tegangan hanya 1,89 % atau sebesar 0,52 kV dengan demikian jatuh tegangan sudah diperbaiki dari yang belum di pasang pembangkit tersebar fotovoltaik sebesar 12,16% atau 3.09 kV dan lebih baik sistem dari pembangkit tersebar fotovoltaik yang dipasang pada bus 858 sebesar 0,17% atau 0,04 kV,

Tabel 4.11 Data rugi-rugi daya setelah pemasangan pembangkit tersebar fotovoltaik pada bus 848 sistem distribusi IEEE 34 bus

Bus 832

XFM-1

Total

Bus 888

|            | Bus     |         | ·        | Rugi-Rugi Daya kW |             |  |
|------------|---------|---------|----------|-------------------|-------------|--|
| Kode       |         |         | Panjang  | Sesudah           | Sebelum     |  |
| Saluran    | Dari    | Ke      | Saluran  | pemasangan        | pemasangan  |  |
|            |         |         |          | Fotovoltaik       | Fotovoltaik |  |
| Saluran 1  | Bus 800 | Bus 802 | 2580 ft  | 11.436            | 3.948       |  |
| Saluran 2  | Bus 802 | Bus 806 | 1730 ft  | 0.946             | 2.649       |  |
| Saluran 3  | Bus 806 | Bus 808 | 32230 ft | 0.636             | 46.493      |  |
| Saluran 4  | Bus 808 | Bus 812 | 37500 ft | 13.821            | 53.726      |  |
| Saluran 6  | Bus 812 | Bus 814 | 29730 ft | 11.517            | 43.094      |  |
| Saluran 7  | Bus 814 | Bus 850 | 10 ft    | 0.005             | 0.019       |  |
| Saluran 8  | Bus 850 | Bus 816 | 310 ft   | 0.162             | 0.596       |  |
| Saluran 12 | Bus 816 | Bus 824 | 10210 ft | 4.773             | 15.651      |  |
| Saluran 14 | Bus 824 | Bus 828 | 840 ft   | 0.39              | 1.214       |  |
| Saluran 15 | Bus 828 | Bus 830 | 20440 ft | 9.609             | 29.483      |  |
| Saluran 16 | Bus 830 | Bus 854 | 520 ft   | 0.247             | 0.707       |  |
| Saluran 18 | Bus 854 | Bus 852 | 36830 ft | 17.909            | 50.09       |  |
| Saluran 19 | Bus 852 | Bus 832 | 10 ft    | 0.005             | 0.014       |  |
| Saluran 20 | Bus 888 | Bus 890 | 10560 ft | 39.585            | 40.234      |  |
| Saluran 21 | Bus 832 | Bus 858 | 4900 ft  | 2.946             | 3.114       |  |
| Saluran 22 | Bus 858 | Bus 834 | 5830 ft  | 3.578             | 3.605       |  |
| Saluran 23 | Bus 834 | Bus 860 | 2020 ft  | 0.209             | 0.193       |  |
| Saluran 24 | Bus 860 | Bus 836 | 2680 ft  | 0.058             | 0.054       |  |
| Saluran 25 | Bus 836 | Bus 862 | 280 ft   | 0                 | 0           |  |
| Saluran 27 | Bus 836 | Bus 840 | 860 ft   | 0.003             | 0.003       |  |
| Saluran 29 | Bus 834 | Bus 842 | 280 ft   | 0.269             | 0.059       |  |
| Saluran 30 | Bus 842 | Bus 844 | 1350 ft  | 1.3               | 0.282       |  |
| Saluran 31 | Bus 844 | Bus 846 | 3640 ft  | 5.573             | 0.066       |  |
| Saluran 32 | Bus 846 | Bus 848 | 530 ft   | 0.855             | 0.004       |  |
|            |         |         | 240/416  |                   |             |  |

Dari tabel 4.11 setelah pemasangan pembangkit tersebar fotovoltaik pada bus 848 rugi-rugi daya yang ada pada sistem IEEE 34 bus ini berkurang 169,651 kW yang awalnya sebelum pemasangan fotovoltaik sebesar 306,723 kW, sehingga menjadi 137,072 kW.

24.9 / 4.16

kV

11.24

137.072 kW

11.425

306.723 kW

# 4.4 Rekapitulasi data perbaikan profil tegangan dan rugi-rugi daya

| No                                                                 | Pengujian                                           | Jenis<br>Jaringan | Kondisi<br>Baik<br>(bus) | Kondisi<br>Marginal<br>(bus) | Bus Jatuh<br>Tegangan<br>Critical | Rugi-rugi<br>Daya<br>(kW) |
|--------------------------------------------------------------------|-----------------------------------------------------|-------------------|--------------------------|------------------------------|-----------------------------------|---------------------------|
|                                                                    | Aliran daya                                         | Primer            | 4                        | 4                            | 16                                | 255,064                   |
| 1 sistem<br>distribu                                               | sistem                                              | Sekunder          | 0                        | 0                            | 2                                 | 51,659                    |
|                                                                    | distribusi<br>IEEE 34 bus                           | Total             | 4                        | 4                            | 18                                | 306,723                   |
|                                                                    | Pemasangan                                          | Primer            | 8                        | 4                            | 12                                | 176.242                   |
| 2 pada<br>si<br>dis                                                | fotovoltaik                                         | Sekunder          | 0                        | 0                            | 2                                 | 51.335                    |
|                                                                    | pada bus 812<br>sistem<br>distribusi<br>IEEE 34 bus | Total             | 8                        | 4                            | 12                                | 227.557                   |
|                                                                    | Pemasangan                                          | Primer            | 24                       | 0                            | 0                                 | 78.348                    |
| fotovoltaik<br>pada bus 858<br>sistem<br>distribusi<br>IEEE 34 bus |                                                     | Sekunder          | 0                        | 1                            | 1                                 | 50.832                    |
|                                                                    | sistem                                              | Total             | 24                       | 1                            | 1                                 | 129.18                    |
| 4 pa                                                               | Pemasangan                                          | Primer            | 24                       | 0                            | 0                                 | 86.247                    |
|                                                                    | fotovoltaik                                         | Sekunder          | 0                        | 1                            | 1                                 | 50.824                    |
|                                                                    | pada bus 848<br>sistem<br>distribusi<br>IEEE 34 bus | Total             | 24                       | 1                            | 1                                 | 137.072                   |

Dari hasil pembahasan di atas penentuan pemasangan fotovoltaik dan kapasitas pembangkit tersebar pada sistem IEEE 34 menggunakan 3 lokasi yang berbeda, pemasangan pembangkit tersebar lebih baik pada bus 858 dengan nilai rata-rata jatuh tegangan pada sistem ini sebesar 2,06% dari tegangan sebenarnya yang mana telah berada pada batas seharusnya di bawah 5 % dan rugi-rugi daya total sebesar 129,18 kW.

Secara keseluruhan pemasangan pembangkit tersebar fotovoltaik pada sistem distribusi mampu memperbaiki jatuh tegangan dan mengurangi rugi-rugi daya, walau pada jaringan sisi sekunder masih memiliki jatuh tegangan dan rugi-rugi daya yang besar. Hal ini merupakan adanya faktor-faktor lain diantaranya yaitu kelebihan beban pada trafo dan panjang saluran pada jaringan sekunder ini.

#### V KESIMPULAN

#### 5.1 Kesimpulan

Dari hasil analisa dan pembahasan yang telah dilakukan untuk mengetahui pengaruh penentuan fotovoltaik dan kapasitas pembangkit tersebar pada sistem distribusi IEEE 34 bus, adapun kesimpulan dari penelitian ini sebagai berikut:

- sistem distribusi ini nilai rugi-rugi daya total sebesar 306,723 kW dan rugi-rugi daya terbesar pada saluran 4 sebesar 53,726 kW yang menghubungkan bus 808 dengan bus 812.
- Pada sistem distribusi IEEE 34 bus memiliki nilai rata-rata jatuh tegangan 12,95% dari tegangan nominal dan jatuh tegangan yang paling tinggi terdapat pada bus 858 dan 848 dengan besar jatuh tegangan 16% dari tegangan seharusnya atau sebesar 4,2 kV.
- Dengan menggunakan 3 lokasi yang berbeda, pemasangan pembangkit tersebar lebih baik pada bus 858 dengan nilai rata-rata jatuh tegangan pada sistem ini sebesar 2,06% dengan jatuh tegangan awal sebesar 12,95 %
- Pembangkit tersebar fotovoltaik yang dipasang pada sistem distribusi IEEE 34 bus ini berkapasitas 1800 kVa

#### VI REFERENSI

- [1] Arismunandar W, (1995). Teknologi Rekayasa Surya, Cetakan Pertama PT. Pradya Paramita, Jakarta.
- Bujongjit, S. (2007). Analysis Of Grid-Connected Photovoltaik System Using PSIM. Bujongjit2017, 112-115.
- [3] Dalam, H. D. (2013). Analisis Susut Energi Pada Sistem Jaringan Distribusi Di PT. PLN APJ Yogyakarta UPJ Wonosaril Unit Semanu. Seminar Nasional *Informatika* 2013, 22-31.
- [4] Gonen, T. (1996). Electrical Power Distribution System Eengineering. Turki
- [5] Maulana, S. (2012). Program Aliran Daya Untuk Analisis Sistem Distribusi Dengan Penambahan Photovoltaik Model. 65-88-1-SM,1, 1-10.
- [6] Sudirman, S. (2012). Analisis Sistem Tenaga. Bandung: Kanayakan.
- [7] Robert S, Simon. (1996). Solar Electricity, A Practical Guide to Designing and installing small Photovoltaic System, New York: Prentice Hill.
- [8] Windiarso, (2000). *PLTS 150 W*, Jakarta: Proyek Pendidikan Kejuruan dan Teknologi Jakarta.

- [9] Yahyaoui, I. (2016). Control Strategy For Small-Scale Photovoltaic system. *Dept. Electric Engineering*, 1-6
  [10] Zuhal. (1991). Dasar Tenaga Listrik. ITB Bandung, Bandung.
  [11] Wibo, A. (n.d.). *energi surya*. Retrieved Oktober 2018, from <a href="http://energisurya.wordpress.com">http://energisurya.wordpress.com</a>
  [12] Wikipedia.org. *Solar Cell*. <a href="http://en.wikipedia.org/wiki/Solar\_cell.">http://en.wikipedia.org/wiki/Solar\_cell.</a>
  Disunting tanggal 22 November 2018